Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/HMM/dhmm_em_online.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [transmat, obsmat, exp_num_trans, exp_num_emit, gamma, ll] = dhmm_em_online(... prior, transmat, obsmat, exp_num_trans, exp_num_emit, decay, data, ... act, adj_trans, adj_obs, dirichlet, filter_only) % ONLINE_EM Adjust the parameters using a weighted combination of the old and new expected statistics % % [transmat, obsmat, exp_num_trans, exp_num_emit, gamma, ll] = online_em(... % prior, transmat, obsmat, exp_num_trans, exp_num_emit, decay, data, act, ... % adj_trans, adj_obs, dirichlet, filter_only) % % 0 < decay < 1, with smaller values meaning the past is forgotten more quickly. % (We need to decay the old ess, since they were based on out-of-date parameters.) % The other params are as in learn_hmm. % We do a single forwards-backwards pass on the provided data, initializing with the specified prior. % (If filter_only = 1, we only do a forwards pass.) if ~exist('act'), act = []; end if ~exist('adj_trans'), adj_trans = 1; end if ~exist('adj_obs'), adj_obs = 1; end if ~exist('dirichlet'), dirichlet = 0; end if ~exist('filter_only'), filter_only = 0; end % E step olikseq = multinomial_prob(data, obsmat); if isempty(act) [alpha, beta, gamma, ll, xi] = fwdback(prior, transmat, olikseq, 'fwd_only', filter_only); else [alpha, beta, gamma, ll, xi] = fwdback(prior, transmat, olikseq, 'fwd_only', filter_only, ... 'act', act); end % Increment ESS [S O] = size(obsmat); if adj_obs exp_num_emit = decay*exp_num_emit + dirichlet*ones(S,O); T = length(data); if T < O for t=1:T o = data(t); exp_num_emit(:,o) = exp_num_emit(:,o) + gamma(:,t); end else for o=1:O ndx = find(data==o); if ~isempty(ndx) exp_num_emit(:,o) = exp_num_emit(:,o) + sum(gamma(:, ndx), 2); end end end end if adj_trans & (T > 1) if isempty(act) exp_num_trans = decay*exp_num_trans + sum(xi,3); else % act(2) determines Q(2), xi(:,:,1) holds P(Q(1), Q(2)) A = length(transmat); for a=1:A ndx = find(act(2:end)==a); if ~isempty(ndx) exp_num_trans{a} = decay*exp_num_trans{a} + sum(xi(:,:,ndx), 3); end end end end % M step if adj_obs obsmat = mk_stochastic(exp_num_emit); end if adj_trans & (T>1) if isempty(act) transmat = mk_stochastic(exp_num_trans); else for a=1:A transmat{a} = mk_stochastic(exp_num_trans{a}); end end end