Mercurial > hg > camir-aes2014
view toolboxes/distance_learning/mlr/util/soft_classify.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function Ypredict = soft_classify(W, test_k, Xtrain, Ytrain, Xtest, Testnorm) % Ypredict = soft_classify(W, test_k, Xtrain, Ytrain, Xtest, Testnorm) % % W = d-by-d positive semi-definite matrix % test_k = k-value to use for KNN % Xtrain = d-by-n matrix of training data % Ytrain = n-by-1 vector of training labels % Xtest = d-by-m matrix of testing data % Testnorm= m-by-#kernels vector of k(i,i) for each i in test % addpath('cuttingPlane', 'distance', 'feasible', 'initialize', 'loss', ... 'metricPsi', 'regularize', 'separationOracle', 'util'); [d, nTrain, nKernel] = size(Xtrain); nTest = size(Xtest, 2); test_k = min(test_k, nTrain); if nargin < 7 Testnorm = []; end % Build the distance matrix [D, I] = mlr_test_distance(W, Xtrain, Xtest, Testnorm); % Compute label agreement Ypredict = histc(Ytrain(I(1:test_k,:)), unique(Ytrain)'); end function [D,I] = mlr_test_distance(W, Xtrain, Xtest, Testnorm) % CASES: % Raw: W = [] % Linear, full: W = d-by-d % Single Kernel, full: W = n-by-n % MKL, full: W = n-by-n-by-m % Linear, diagonal: W = d-by-1 % Single Kernel, diagonal: W = n-by-1 % MKL, diag: W = n-by-m % MKL, diag-off-diag: W = m-by-m-by-n [d, nTrain, nKernel] = size(Xtrain); nTest = size(Xtest, 2); if isempty(W) % W = [] => native euclidean distances D = mlr_test_distance_raw(Xtrain, Xtest, Testnorm); elseif size(W,1) == d && size(W,2) == d % We're in a full-projection case D = setDistanceFullMKL([Xtrain Xtest], W, nTrain + (1:nTest), 1:nTrain); elseif size(W,1) == d && size(W,2) == nKernel % We're in a simple diagonal case D = setDistanceDiagMKL([Xtrain Xtest], W, nTrain + (1:nTest), 1:nTrain); elseif size(W,1) == nKernel && size(W,2) == nKernel && size(W,3) == nTrain % We're in DOD mode D = setDistanceDODMKL([Xtrain Xtest], W, nTrain + (1:nTest), 1:nTrain); else % Error? error('Cannot determine metric mode.'); end D = full(D(1:nTrain, nTrain + (1:nTest))); [v,I] = sort(D, 1); end function D = mlr_test_distance_raw(Xtrain, Xtest, Testnorm) [d, nTrain, nKernel] = size(Xtrain); nTest = size(Xtest, 2); if isempty(Testnorm) % Not in kernel mode, compute distances directly D = 0; for i = 1:nKernel D = D + setDistanceDiag([Xtrain(:,:,i) Xtest(:,:,i)], ones(d,1), ... nTrain + (1:nTest), 1:nTrain); end else % We are in kernel mode D = sparse(nTrain + nTest, nTrain + nTest); for i = 1:nKernel Trainnorm = diag(Xtrain(:,:,i)); D(1:nTrain, nTrain + (1:nTest)) = D(1:nTrain, nTrain + (1:nTest)) ... + bsxfun(@plus, Trainnorm, bsxfun(@plus, Testnorm(:,i)', -2 * Xtest(:,:,i))); end end end