Mercurial > hg > camir-aes2014
view toolboxes/distance_learning/mlr/separationOracle/separationOracleMRR.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [Y, Loss] = separationOracleMRR(q, D, pos, neg, k) % % [Y,Loss] = separationOracleMRR(q, D, pos, neg, k) % % q = index of the query point % D = the current distance matrix % pos = indices of relevant results for q % neg = indices of irrelevant results for q % k = length of the list to consider (unused in MRR) % % Y is a permutation 1:n corresponding to the maximally % violated constraint % % Loss is the loss for Y, in this case, 1-MRR(Y) % First, sort the documents in descending order of W'Phi(q,x) % Phi = - (X(q) - X(x)) * (X(q) - X(x))' % Sort the positive documents ScorePos = - D(pos,q); [Vpos, Ipos] = sort(full(ScorePos'), 'descend'); Ipos = pos(Ipos); % Sort the negative documents ScoreNeg = -D(neg,q); [Vneg, Ineg] = sort(full(ScoreNeg'), 'descend'); Ineg = neg(Ineg); % Now, solve the DP for the interleaving numPos = length(pos); numNeg = length(neg); n = numPos + numNeg; cVpos = cumsum(Vpos); cVneg = cumsum(Vneg); % Algorithm: % For each RR score in 1/1, 1/2, ..., 1/(numNeg+1) % Calculate maximum discriminant score for that precision level MRR = ((1:(numNeg+1)).^-1)'; Discriminant = zeros(numNeg+1, 1); Discriminant(end) = numPos * cVneg(end) - numNeg * cVpos(end); % For the rest of the positions, we're interleaving one more negative % example into the 2nd-through-last positives offsets = 1 + binarysearch(Vneg, Vpos(2:end)); % How many of the remaining positives go before Vneg(a)? NegsBefore = -bsxfun(@ge, offsets, (1:length(Vpos))'); % For the last position, all negatives come before all positives NegsBefore(:,numNeg+1) = numNeg; Discriminant(1:numNeg) = -2 * (offsets .* Vneg - cVpos(offsets)); Discriminant = sum(Discriminant) - cumsum(Discriminant) + Discriminant; % Normalize discriminant scores Discriminant = Discriminant / (numPos * numNeg); [s, x] = max(Discriminant - MRR); % Now we know that there are x-1 relevant docs in the max ranking % Construct Y from NegsBefore(x,:) Y = nan * ones(n,1); Y((1:numPos)' + sum(NegsBefore(:,x:end),2)) = Ipos; Y(isnan(Y)) = Ineg; % Compute loss for this list Loss = 1 - MRR(x); end