Mercurial > hg > camir-aes2014
view toolboxes/distance_learning/mlr/mlr_train_primal.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [W, Xi, Diagnostics] = mlr_train(X, Y, Cslack, varargin) % % [W, Xi, D] = mlr_train(X, Y, C,...) % % X = d*n data matrix % Y = either n-by-1 label of vectors % OR % n-by-2 cell array where % Y{q,1} contains relevant indices for q, and % Y{q,2} contains irrelevant indices for q % % C >= 0 slack trade-off parameter (default=1) % % W = the learned metric % Xi = slack value on the learned metric % D = diagnostics % % Optional arguments: % % [W, Xi, D] = mlr_train(X, Y, C, LOSS) % where LOSS is one of: % 'AUC': Area under ROC curve (default) % 'KNN': KNN accuracy % 'Prec@k': Precision-at-k % 'MAP': Mean Average Precision % 'MRR': Mean Reciprocal Rank % 'NDCG': Normalized Discounted Cumulative Gain % % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k) % where k is the number of neighbors for Prec@k or NDCG % (default=3) % % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG) % where REG defines the regularization on W, and is one of: % 0: no regularization % 1: 1-norm: trace(W) (default) % 2: 2-norm: trace(W' * W) % 3: Kernel: trace(W * X), assumes X is square and positive-definite % % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal) % Diagonal = 0: learn a full d-by-d W (default) % Diagonal = 1: learn diagonally-constrained W (d-by-1) % % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal, B) % where B > 0 enables stochastic optimization with batch size B % TIME_START = tic(); global C; C = Cslack; [d,n,m] = size(X); if m > 1 MKL = 1; else MKL = 0; end if nargin < 3 C = 1; end %%% % Default options: global CP SO PSI REG FEASIBLE LOSS DISTANCE SETDISTANCE CPGRADIENT; global FEASIBLE_COUNT; FEASIBLE_COUNT = 0; CP = @cuttingPlaneFull; SO = @separationOracleAUC; PSI = @metricPsiPO; if ~MKL INIT = @initializeFull; REG = @regularizeTraceFull; FEASIBLE = @feasibleFull; CPGRADIENT = @cpGradientFull; DISTANCE = @distanceFull; SETDISTANCE = @setDistanceFull; LOSS = @lossHinge; Regularizer = 'Trace'; else INIT = @initializeFullMKL; REG = @regularizeMKLFull; FEASIBLE = @feasibleFullMKL; CPGRADIENT = @cpGradientFullMKL; DISTANCE = @distanceFullMKL; SETDISTANCE = @setDistanceFullMKL; LOSS = @lossHingeFullMKL; Regularizer = 'Trace'; end Loss = 'AUC'; Feature = 'metricPsiPO'; %%% % Default k for prec@k, ndcg k = 3; %%% % Stochastic violator selection? STOCHASTIC = 0; batchSize = n; SAMPLES = 1:n; if nargin > 3 switch lower(varargin{1}) case {'auc'} SO = @separationOracleAUC; PSI = @metricPsiPO; Loss = 'AUC'; Feature = 'metricPsiPO'; case {'knn'} SO = @separationOracleKNN; PSI = @metricPsiPO; Loss = 'KNN'; Feature = 'metricPsiPO'; case {'prec@k'} SO = @separationOraclePrecAtK; PSI = @metricPsiPO; Loss = 'Prec@k'; Feature = 'metricPsiPO'; case {'map'} SO = @separationOracleMAP; PSI = @metricPsiPO; Loss = 'MAP'; Feature = 'metricPsiPO'; case {'mrr'} SO = @separationOracleMRR; PSI = @metricPsiPO; Loss = 'MRR'; Feature = 'metricPsiPO'; case {'ndcg'} SO = @separationOracleNDCG; PSI = @metricPsiPO; Loss = 'NDCG'; Feature = 'metricPsiPO'; otherwise error('MLR:LOSS', ... 'Unknown loss function: %s', varargin{1}); end end if nargin > 4 k = varargin{2}; end Diagonal = 0; if nargin > 6 & varargin{4} > 0 Diagonal = varargin{4}; if ~MKL INIT = @initializeDiag; REG = @regularizeTraceDiag; FEASIBLE = @feasibleDiag; CPGRADIENT = @cpGradientDiag; DISTANCE = @distanceDiag; SETDISTANCE = @setDistanceDiag; Regularizer = 'Trace'; else INIT = @initializeDiagMKL; REG = @regularizeMKLDiag; FEASIBLE = @feasibleDiagMKL; CPGRADIENT = @cpGradientDiagMKL; DISTANCE = @distanceDiagMKL; SETDISTANCE = @setDistanceDiagMKL; LOSS = @lossHingeDiagMKL; Regularizer = 'Trace'; end end if nargin > 5 switch(varargin{3}) case {0} REG = @regularizeNone; Regularizer = 'None'; case {1} if MKL if Diagonal == 0 REG = @regularizeMKLFull; elseif Diagonal == 1 REG = @regularizeMKLDiag; end else if Diagonal REG = @regularizeTraceDiag; else REG = @regularizeTraceFull; end end Regularizer = 'Trace'; case {2} if Diagonal REG = @regularizeTwoDiag; else REG = @regularizeTwoFull; end Regularizer = '2-norm'; case {3} if MKL if Diagonal == 0 REG = @regularizeMKLFull; elseif Diagonal == 1 REG = @regularizeMKLDiag; end else if Diagonal REG = @regularizeMKLDiag; else REG = @regularizeKernel; end end Regularizer = 'Kernel'; otherwise error('MLR:REGULARIZER', ... 'Unknown regularization: %s', varargin{3}); end end % Are we in stochastic optimization mode? if nargin > 7 && varargin{5} > 0 if varargin{5} < n STOCHASTIC = 1; CP = @cuttingPlaneRandom; batchSize = varargin{5}; end end % Algorithm % % Working <- [] % % repeat: % (W, Xi) <- solver(X, Y, C, Working) % % for i = 1:|X| % y^_i <- argmax_y^ ( Delta(y*_i, y^) + w' Psi(x_i, y^) ) % % Working <- Working + (y^_1,y^_2,...,y^_n) % until mean(Delta(y*_i, y_i)) - mean(w' (Psi(x_i,y_i) - Psi(x_i,y^_i))) % <= Xi + epsilon global DEBUG; if isempty(DEBUG) DEBUG = 0; end %%% % Timer to eliminate old constraints ConstraintClock = 100; %%% % Convergence criteria for worst-violated constraint E = 1e-3; % Initialize W = INIT(X); ClassScores = []; if isa(Y, 'double') Ypos = []; Yneg = []; ClassScores = synthesizeRelevance(Y); elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 2 dbprint(1, 'Using supplied Ypos/Yneg'); Ypos = Y(:,1); Yneg = Y(:,2); % Compute the valid samples SAMPLES = find( ~(cellfun(@isempty, Y(:,1)) | cellfun(@isempty, Y(:,2)))); elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 1 dbprint(1, 'Using supplied Ypos/synthesized Yneg'); Ypos = Y(:,1); Yneg = []; SAMPLES = find( ~(cellfun(@isempty, Y(:,1)))); else error('MLR:LABELS', 'Incorrect format for Y.'); end %% % If we don't have enough data to make the batch, cut the batch batchSize = min([batchSize, length(SAMPLES)]); Diagnostics = struct( 'loss', Loss, ... % Which loss are we optimizing? 'feature', Feature, ... % Which ranking feature is used? 'k', k, ... % What is the ranking length? 'regularizer', Regularizer, ... % What regularization is used? 'diagonal', Diagonal, ... % 0 for full metric, 1 for diagonal 'num_calls_SO', 0, ... % Calls to separation oracle 'num_calls_solver', 0, ... % Calls to solver 'time_SO', 0, ... % Time in separation oracle 'time_solver', 0, ... % Time in solver 'time_total', 0, ... % Total time 'f', [], ... % Objective value 'num_steps', [], ... % Number of steps for each solver run 'num_constraints', [], ... % Number of constraints for each run 'Xi', [], ... % Slack achieved for each run 'Delta', [], ... % Mean loss for each SO call 'gap', [], ... % Gap between loss and slack 'C', C, ... % Slack trade-off 'epsilon', E, ... % Convergence threshold 'feasible_count', 0, ... % Counter for projections 'constraint_timer', ConstraintClock); % Time before evicting old constraints global PsiR; global PsiClock; PsiR = {}; PsiClock = []; Xi = -Inf; Margins = []; if STOCHASTIC dbprint(1, 'STOCHASTIC OPTIMIZATION: Batch size is %d/%d', batchSize, n); end while 1 dbprint(1, 'Round %03d', Diagnostics.num_calls_solver); % Generate a constraint set Termination = 0; dbprint(2, 'Calling separation oracle...'); [PsiNew, Mnew, SO_time] = CP(k, X, W, Ypos, Yneg, batchSize, SAMPLES, ClassScores); Termination = LOSS(W, PsiNew, Mnew, 0); Diagnostics.num_calls_SO = Diagnostics.num_calls_SO + 1; Diagnostics.time_SO = Diagnostics.time_SO + SO_time; Margins = cat(1, Margins, Mnew); PsiR = cat(1, PsiR, PsiNew); PsiClock = cat(1, PsiClock, 0); dbprint(2, '\n\tActive constraints : %d', length(PsiClock)); dbprint(2, '\t Mean loss : %0.4f', Mnew); dbprint(2, '\t Termination -Xi < E : %0.4f <? %.04f\n', Termination - Xi, E); Diagnostics.gap = cat(1, Diagnostics.gap, Termination - Xi); Diagnostics.Delta = cat(1, Diagnostics.Delta, Mnew); if Termination <= Xi + E dbprint(1, 'Done.'); break; end dbprint(1, 'Calling solver...'); PsiClock = PsiClock + 1; Solver_time = tic(); [W, Xi, Dsolver] = mlr_solver(C, Margins, W, X); Diagnostics.time_solver = Diagnostics.time_solver + toc(Solver_time); Diagnostics.num_calls_solver = Diagnostics.num_calls_solver + 1; Diagnostics.Xi = cat(1, Diagnostics.Xi, Xi); Diagnostics.f = cat(1, Diagnostics.f, Dsolver.f); Diagnostics.num_steps = cat(1, Diagnostics.num_steps, Dsolver.num_steps); %%% % Cull the old constraints GC = PsiClock < ConstraintClock; Margins = Margins(GC); PsiR = PsiR(GC); PsiClock = PsiClock(GC); Diagnostics.num_constraints = cat(1, Diagnostics.num_constraints, length(PsiR)); end % Finish diagnostics Diagnostics.time_total = toc(TIME_START); Diagnostics.feasible_count = FEASIBLE_COUNT; end function ClassScores = synthesizeRelevance(Y) classes = unique(Y); nClasses = length(classes); ClassScores = struct( 'Y', Y, ... 'classes', classes, ... 'Ypos', [], ... 'Yneg', []); Ypos = cell(nClasses, 1); Yneg = cell(nClasses, 1); for c = 1:nClasses Ypos{c} = (Y == classes(c)); Yneg{c} = ~Ypos{c}; end ClassScores.Ypos = Ypos; ClassScores.Yneg = Yneg; end