Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_vs2to1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function sS = som_vs2to1(sS) %SOM_VS2TO1 Convert version 2 struct to version 1. % % sSold = som_vs2to1(sSnew) % % sMold = som_vs2to1(sMnew); % sDold = som_vs2to1(sDnew); % % Input and output arguments: % sSnew (struct) a SOM Toolbox version 2 struct % sSold (struct) a SOM Toolbox version 1 struct % % For more help, try 'type som_vs2to1' or check out online documentation. % See also SOM_SET, SOM_VS1TO2. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_vs2to1 % % PURPOSE % % Converts SOM Toolbox version 2 structs to version 1 structs. % % SYNTAX % % sS1 = som_vs2to1(sS2) % % DESCRIPTION % % This function is offered to allow the change of new map and data structs % to old ones. There are quite a lot of changes between the versions, % especially in the map struct, and this function makes it possible to % use the old functions with new structs. % % Note that part of the information is lost in the conversion. Especially, % training history is lost, and the normalization is, except in the simplest % cases (like all have 'range' or 'var' normalization) screwed up. % % REQUIRED INPUT ARGUMENTS % % sS2 (struct) som SOM Toolbox version 2.0 struct (map, data, % training or normalization struct) % % OUTPUT ARGUMENTS % % sS1 (struct) the corresponding SOM Toolbox version 2.0 struct % % EXAMPLES % % sM = som_vs2to1(sMnew); % sD = som_vs2to1(sDnew); % sT = som_vs2to1(sMnew.trainhist(1)); % % SEE ALSO % % som_set Set values and create SOM Toolbox structs. % som_vs1to2 Transform structs from 1.0 version to 2.0. % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 101199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% check arguments error(nargchk(1, 1, nargin)); % check no. of input arguments is correct %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% set field values switch sS.type, case 'som_map', msize = sS.topol.msize; [munits dim] = size(sS.codebook); % topology if strcmp(sS.topol.shape,'sheet'), shape = 'rect'; else shape = sS.shape; end % labels labels = cell(munits,1); nl = size(sS.labels,2); for i=1:munits, labels{i} = cell(nl,1); for j=1:nl, labels{i}{j} = sS.labels{i,j}; end end % trainhist tl = length(sS.trainhist); if tl==0 | strcmp(sS.trainhist(1).algorithm,'lininit'), init_type = 'linear'; else init_type = 'random'; end if tl>1, for i=2:tl, train_seq{i-1} = som_vs2to1(sS.trainhist(i)); end train_type = sS.trainhist(tl).algorithm; else train_seq = []; train_type = 'batch'; end if tl>0, data_name = sS.trainhist(tl).data_name; else data_name = ''; end % component normalizations sN = convert_normalizations(sS.comp_norm); if strcmp(sN.name,'som_hist_norm'), sS.codebook = redo_hist_norm(sS.codebook,sS.comp_norm,sN); end % map sSnew = struct('init_type', 'linear', 'train_type', 'batch', 'lattice' ,... 'hexa', 'shape', 'rect', 'neigh', 'gaussian', 'msize', msize, ... 'train_sequence', [], 'codebook', [], 'labels', [], ... 'mask', [], 'data_name', 'unnamed', 'normalization', [], ... 'comp_names', [], 'name', 'unnamed'); sSnew.init_type = init_type; sSnew.train_type = train_type; sSnew.lattice = sS.topol.lattice; sSnew.shape = shape; sSnew.neigh = sS.neigh; sSnew.msize = sS.topol.msize; sSnew.train_sequence = train_seq; sSnew.codebook = reshape(sS.codebook,[sS.topol.msize dim]); sSnew.labels = labels; sSnew.mask = sS.mask; sSnew.data_name = data_name; sSnew.normalization = sN; sSnew.comp_names = sS.comp_names; sSnew.name = sS.name; case 'som_data', [dlen dim] = size(sS.data); % component normalizations sN = convert_normalizations(sS.comp_norm); if strcmp(sN.name,'som_hist_norm'), sS.codebook = redo_hist_norm(sS.codebook,sS.comp_norm,sN); end % data sSnew = struct('data', [], 'name', '', 'labels' , [], 'comp_names', ... [], 'normalization', []); sSnew.data = sS.data; sSnew.name = sS.name; sSnew.labels = sS.labels; sSnew.comp_names = sS.comp_names; sSnew.normalization = sN; case 'som_norm', sSnew = struct('name','som_var_norm','inv_params',[]); switch sS.method, case 'var', sSnew.name = 'som_var_norm'; case 'range', sSnew.name = 'som_lin_norm'; case 'histD', sSnew.name = 'som_hist_norm'; otherwise, warning(['Method ' method ' does not exist in version 1.']) end if strcmp(sS.status,'done'), switch sS.method, case 'var', sSnew.inv_params = zeros(2,1); sSnew.inv_params(1) = sS.params(1); sSnew.inv_params(2) = sS.params(2); case 'range', sSnew.inv_params = zeros(2,1); sSnew.inv_params(1) = sS.params(1); sSnew.inv_params(2) = sS.params(2) + sS.params(1);; case 'histD', bins = length(sS.params); sSnew.inv_params = zeros(bins+1,1) + Inf; sSnew.inv_params(1:bins,i) = sS.params; sSnew.inv_params(end,i) = bins; end end case 'som_train', sSnew = struct('algorithm', sS.algorithm, 'radius_ini', ... sS.radius_ini, 'radius_fin', sS.radius_fin, 'alpha_ini', ... sS.alpha_ini, 'alpha_type', sS.alpha_type, 'trainlen', sS.trainlen, ... 'qerror', NaN, 'time', sS.time); case 'som_topol', disp('Version 1 of SOM Toolbox did not have topology structure.\n'); otherwise, error('Unrecognized struct.'); end sS = sSnew; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% subfunctions function sN = convert_normalizations(cnorm) dim = length(cnorm); sN = struct('name','som_var_norm','inv_params',[]); % check that there is exactly one normalization per component % and that their status and method is the same ok = 1; nof = zeros(dim,1); for i=1:dim, nof(i) = length(cnorm{i}); end if any(nof>1), ok=0; elseif any(nof==1) & any(nof==0), ok=0; elseif any(nof>0), status = cnorm{1}.status; method = cnorm{1}.method; for i=2:dim, if ~strcmp(cnorm{i}.status,status) | ~strcmp(cnorm{i}.method,method), ok = 0; end end elseif all(nof==0), return; end if ~ok, warning(['Normalization could not be converted. All variables can' ... ' only be normalized with a single, and same, method.']); return; end % method name switch method, case 'var', sN.name = 'som_var_norm'; case 'range', sN.name = 'som_lin_norm'; case 'histD', sN.name = 'som_hist_norm'; otherwise, warning(['Normalization could not be converted. Method ' method ... 'does not exist in version 1.']); return; end % if not done, inv_params is empty if ~strcmp(status,'done'), return; end % ok, make the conversion switch method, case 'var', sN.inv_params = zeros(2,dim); for i=1:dim, sN.inv_params(1,i) = cnorm{i}.params(1); sN.inv_params(2,i) = cnorm{i}.params(2); end case 'range', sN.inv_params = zeros(2,dim); for i=1:dim, sN.inv_params(1,i) = cnorm{i}.params(1); sN.inv_params(2,i) = cnorm{i}.params(2) + cnorm{i}.params(1); end case 'histD', bins = zeros(dim,1); for i=1:dim, bins(i) = length(cnorm{i}.params); end m = max(bins); sN.inv_params = zeros(m+1,dim) + Inf; for i=1:dim, sN.inv_params(1:bins(i),i) = cnorm{i}.params; if bins(i)<m, sN.inv_params(bins(i)+1,i) = NaN; end sN.inv_params(end,i) = bins(i); end end function D = redo_hist_norm(D,cnorm,sN) dim = size(D,2); % first - undo the new way for i=1:dim, bins = length(cnorm{i}.params); D(:,i) = round(D(:,i)*(bins-1)+1); inds = find(~isnan(D(:,i)) & ~isinf(D(:,i))); D(inds,i) = cnorm{i}.params(D(inds,i)); end % then - redo the old way n_bins = sN.inv_params(size(sN.inv_params,1),:); for j = 1:dim, for i = 1:size(D, 1) if ~isnan(D(i, j)), [d ind] = min(abs(D(i, j) - sN.inv_params(1:n_bins(j), j))); if (D(i, j) - sN.inv_params(ind, j)) > 0 & ind < n_bins(j), D(i, j) = ind + 1; else D(i, j) = ind; end end end end D = D * sparse(diag(1 ./ n_bins));