Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_topol_struct.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function sTopol = som_topol_struct(varargin) %SOM_TOPOL_STRUCT Default values for SOM topology. % % sT = som_topol_struct([[argID,] value, ...]) % % sTopol = som_topol_struct('data',D); % sTopol = som_topol_struct('data',D,'munits',200); % sTopol = som_topol_struct(sTopol); % sTopol = som_topol_struct; % % Input and output arguments ([]'s are optional): % [argID, (string) Default map topology depends on a number of % value] (varies) factors (see below). These are given as a % argument ID - argument value pairs, listed below. % % sT (struct) The ready topology struct. % % Topology struct contains values for map size, lattice (default is 'hexa') % and shape (default is 'sheet'). Map size depends on training data and the % number of map units. The number of map units depends on number of training % samples. % % Here are the valid argument IDs and corresponding values. The values which % are unambiguous (marked with '*') can be given without the preceeding argID. % 'dlen' (scalar) length of the training data % 'data' (matrix) the training data % *(struct) the training data % 'munits' (scalar) number of map units % 'msize' (vector) map size % 'lattice' *(string) map lattice: 'hexa' or 'rect' % 'shape' *(string) map shape: 'sheet', 'cyl' or 'toroid' % 'topol' *(struct) incomplete topology struct: its empty fields % will be given values % 'som_topol','sTopol' = 'topol' % % For more help, try 'type som_topol_struct' or check out online documentation. % See also SOM_SET, SOM_TRAIN_STRUCT, SOM_MAKE. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_topol_struct % % PURPOSE % % Default values for map topology and training parameters. % % SYNTAX % % sT = som_topol_struct('argID',value,...); % sT = som_topol_struct(value,...); % % DESCRIPTION % % This function is used to give sensible values for map topology (ie. map % size). The topology struct is returned. % % The topology struct has three fields: '.msize', '.lattice' and % '.shape'. Of these, default value for '.lattice' is 'hexa' and for % '.shape' 'sheet'. Only the '.msize' field depends on the optional % arguments: 'dlen', 'munits' and 'data'. The value for '.msize' field is % determined as follows. % % First, the number of map units is determined (unless it is given). A % heuristic formula of 'munits = 5*sqrt(dlen)' is used to calculate % it. After this, the map size is determined. Basically, the two biggest % eigenvalues of the training data are calculated and the ratio between % sidelengths of the map grid is set to the square root of this ratio. The % actual sidelengths are then set so that their product is as close to the % desired number of map units as possible. If the lattice of the grid is % 'hexa', the ratio is modified a bit to take it into account. If the % lattice is 'hexa' and shape is 'toroid', the map size along the first axis % must be even. % % OPTIONAL INPUT ARGUMENTS % % argID (string) Argument identifier string (see below). % value (varies) Value for the argument (see below). % % The optional arguments can be given as 'argID',value -pairs. If an % argument is given value multiple times, the last one is % used. The valid IDs and corresponding values are listed below. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % % 'dlen' (scalar) length of the training data % 'data' (matrix) the training data % *(struct) the training data % 'munits' (scalar) number of map units % 'msize' (vector) map size % 'lattice' *(string) map lattice: 'hexa' or 'rect' % 'shape' *(string) map shape: 'sheet', 'cyl' or 'toroid' % 'topol' *(struct) incomplete topology struct: its empty fields % will be given values % 'som_topol','sTopol' = 'topol' % % OUTPUT ARGUMENTS % % sT (struct) The topology struct. % % EXAMPLES % % The most important optional argument for the default topology is 'data'. % To get a default topology (given data) use: % % sTopol = som_topol_struct('data',D); % % This sets lattice to its default value 'hexa'. If you want to have a % 'rect' lattice instead: % % sTopol = som_topol_struct('data',D,'lattice','rect'); % or % sTopol = som_topol_struct('data',D,'rect'); % % If you want to have (close to) a specific number of map units, e.g. 100: % % sTopol = som_topol_struct('data',D,'munits',100); % % SEE ALSO % % som_make Initialize and train a map using default parameters. % som_train_struct Default training parameters. % som_randinint Random initialization algorithm. % som_lininit Linear initialization algorithm. % som_seqtrain Sequential training algorithm. % som_batchtrain Batch training algorithm. % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0alpha juuso 060898 250399 070499 050899 240801 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% check arguments % initialize sTopol = som_set('som_topol','lattice','hexa','shape','sheet'); D = []; dlen = NaN; dim = 2; munits = NaN; % varargin i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, case 'dlen', i=i+1; dlen = varargin{i}; case 'munits', i=i+1; munits = varargin{i}; sTopol.msize = 0; case 'msize', i=i+1; sTopol.msize = varargin{i}; case 'lattice', i=i+1; sTopol.lattice = varargin{i}; case 'shape', i=i+1; sTopol.shape = varargin{i}; case 'data', i=i+1; if isstruct(varargin{i}), D = varargin{i}.data; else D = varargin{i}; end [dlen dim] = size(D); case {'hexa','rect'}, sTopol.lattice = varargin{i}; case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; case {'som_topol','sTopol','topol'}, i=i+1; if ~isempty(varargin{i}.msize) & prod(varargin{i}.msize), sTopol.msize = varargin{i}.msize; end if ~isempty(varargin{i}.lattice), sTopol.lattice = varargin{i}.lattice; end if ~isempty(varargin{i}.shape), sTopol.shape = varargin{i}.shape; end otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}.type, case 'som_topol', if ~isempty(varargin{i}.msize) & prod(varargin{i}.msize), sTopol.msize = varargin{i}.msize; end if ~isempty(varargin{i}.lattice), sTopol.lattice = varargin{i}.lattice; end if ~isempty(varargin{i}.shape), sTopol.shape = varargin{i}.shape; end case 'som_data', D = varargin{i}.data; [dlen dim] = size(D); otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_topol_struct) Ignoring invalid argument #' num2str(i)]); end i = i+1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% action - topology struct % lattice and shape set already, so if msize is also set, there's % nothing else to do if prod(sTopol.msize) & ~isempty(sTopol.msize), return; end % otherwise, decide msize % first (if necessary) determine the number of map units (munits) if isnan(munits), if ~isnan(dlen), munits = ceil(5 * dlen^0.5); % this is just one way to make a guess... else munits = 100; % just a convenient value end end % then determine the map size (msize) if dim == 1, % 1-D data sTopol.msize = [1 ceil(munits)]; elseif size(D,1)<2, % eigenvalues cannot be determined since there's no data sTopol.msize = round(sqrt(munits)); sTopol.msize(2) = round(munits/sTopol.msize(1)); else % determine map size based on eigenvalues % initialize xdim/ydim ratio using principal components of the input % space; the ratio is the square root of ratio of two largest eigenvalues % autocorrelation matrix A = zeros(dim)+Inf; for i=1:dim, D(:,i) = D(:,i) - mean(D(isfinite(D(:,i)),i)); end for i=1:dim, for j=i:dim, c = D(:,i).*D(:,j); c = c(isfinite(c)); A(i,j) = sum(c)/length(c); A(j,i) = A(i,j); end end % take mdim first eigenvectors with the greatest eigenvalues [V,S] = eig(A); eigval = diag(S); [y,ind] = sort(eigval); eigval = eigval(ind); %me = mean(D); %D = D - me(ones(length(ind),1),:); % remove mean from data %eigval = sort(eig((D'*D)./size(D,1))); if eigval(end)==0 | eigval(end-1)*munits<eigval(end), ratio = 1; else ratio = sqrt(eigval(end)/eigval(end-1)); % ratio between map sidelengths end % in hexagonal lattice, the sidelengths are not directly % proportional to the number of units since the units on the % y-axis are squeezed together by a factor of sqrt(0.75) if strcmp(sTopol.lattice,'hexa'), sTopol.msize(2) = min(munits, round(sqrt(munits / ratio * sqrt(0.75)))); else sTopol.msize(2) = min(munits, round(sqrt(munits / ratio))); end sTopol.msize(1) = round(munits / sTopol.msize(2)); % if actual dimension of the data is 1, make the map 1-D if min(sTopol.msize) == 1, sTopol.msize = [1 max(sTopol.msize)]; end; % a special case: if the map is toroid with hexa lattice, % size along first axis must be even if strcmp(sTopol.lattice,'hexa') & strcmp(sTopol.shape,'toroid'), if mod(sTopol.msize(1),2), sTopol.msize(1) = sTopol.msize(1) + 1; end end end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%