Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_seqtrain.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [sMap, sTrain] = som_seqtrain(sMap, D, varargin) %SOM_SEQTRAIN Use sequential algorithm to train the Self-Organizing Map. % % [sM,sT] = som_seqtrain(sM, D, [[argID,] value, ...]) % % sM = som_seqtrain(sM,D); % sM = som_seqtrain(sM,sD,'alpha_type','power','tracking',3); % [M,sT] = som_seqtrain(M,D,'ep','trainlen',10,'inv','hexa'); % % Input and output arguments ([]'s are optional): % sM (struct) map struct, the trained and updated map is returned % (matrix) codebook matrix of a self-organizing map % size munits x dim or msize(1) x ... x msize(k) x dim % The trained map codebook is returned. % D (struct) training data; data struct % (matrix) training data, size dlen x dim % [argID, (string) See below. The values which are unambiguous can % value] (varies) be given without the preceeding argID. % % sT (struct) learning parameters used during the training % % Here are the valid argument IDs and corresponding values. The values which % are unambiguous (marked with '*') can be given without the preceeding argID. % 'mask' (vector) BMU search mask, size dim x 1 % 'msize' (vector) map size % 'radius' (vector) neighborhood radiuses, length 1, 2 or trainlen % 'radius_ini' (scalar) initial training radius % 'radius_fin' (scalar) final training radius % 'alpha' (vector) learning rates, length trainlen % 'alpha_ini' (scalar) initial learning rate % 'tracking' (scalar) tracking level, 0-3 % 'trainlen' (scalar) training length % 'trainlen_type' *(string) is the given trainlen 'samples' or 'epochs' % 'train' *(struct) train struct, parameters for training % 'sTrain','som_train ' = 'train' % 'alpha_type' *(string) learning rate function, 'inv', 'linear' or 'power' % 'sample_order'*(string) order of samples: 'random' or 'ordered' % 'neigh' *(string) neighborhood function, 'gaussian', 'cutgauss', % 'ep' or 'bubble' % 'topol' *(struct) topology struct % 'som_topol','sTopo l' = 'topol' % 'lattice' *(string) map lattice, 'hexa' or 'rect' % 'shape' *(string) map shape, 'sheet', 'cyl' or 'toroid' % % For more help, try 'type som_seqtrain' or check out online documentation. % See also SOM_MAKE, SOM_BATCHTRAIN, SOM_TRAIN_STRUCT. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_seqtrain % % PURPOSE % % Trains a Self-Organizing Map using the sequential algorithm. % % SYNTAX % % sM = som_seqtrain(sM,D); % sM = som_seqtrain(sM,sD); % sM = som_seqtrain(...,'argID',value,...); % sM = som_seqtrain(...,value,...); % [sM,sT] = som_seqtrain(M,D,...); % % DESCRIPTION % % Trains the given SOM (sM or M above) with the given training data % (sD or D) using sequential SOM training algorithm. If no optional % arguments (argID, value) are given, a default training is done, the % parameters are obtained from SOM_TRAIN_STRUCT function. Using % optional arguments the training parameters can be specified. Returns % the trained and updated SOM and a train struct which contains % information on the training. % % REFERENCES % % Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag, % Berlin, 1995, pp. 78-82. % Kohonen, T., "Clustering, Taxonomy, and Topological Maps of % Patterns", International Conference on Pattern Recognition % (ICPR), 1982, pp. 114-128. % Kohonen, T., "Self-Organized formation of topologically correct % feature maps", Biological Cybernetics 43, 1982, pp. 59-69. % % REQUIRED INPUT ARGUMENTS % % sM The map to be trained. % (struct) map struct % (matrix) codebook matrix (field .data of map struct) % Size is either [munits dim], in which case the map grid % dimensions (msize) should be specified with optional arguments, % or [msize(1) ... msize(k) dim] in which case the map % grid dimensions are taken from the size of the matrix. % Lattice, by default, is 'rect' and shape 'sheet'. % D Training data. % (struct) data struct % (matrix) data matrix, size [dlen dim] % % OPTIONAL INPUT ARGUMENTS % % argID (string) Argument identifier string (see below). % value (varies) Value for the argument (see below). % % The optional arguments can be given as 'argID',value -pairs. If an % argument is given value multiple times, the last one is % used. The valid IDs and corresponding values are listed below. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % % 'mask' (vector) BMU search mask, size dim x 1. Default is % the one in sM (field '.mask') or a vector of % ones if only a codebook matrix was given. % 'msize' (vector) map grid dimensions. Default is the one % in sM (field sM.topol.msize) or % 'si = size(sM); msize = si(1:end-1);' % if only a codebook matrix was given. % 'radius' (vector) neighborhood radius % length = 1: radius_ini = radius % length = 2: [radius_ini radius_fin] = radius % length > 2: the vector given neighborhood % radius for each step separately % trainlen = length(radius) % 'radius_ini' (scalar) initial training radius % 'radius_fin' (scalar) final training radius % 'alpha' (vector) learning rate % length = 1: alpha_ini = alpha % length > 1: the vector gives learning rate % for each step separately % trainlen is set to length(alpha) % alpha_type is set to 'user defined' % 'alpha_ini' (scalar) initial learning rate % 'tracking' (scalar) tracking level: 0, 1 (default), 2 or 3 % 0 - estimate time % 1 - track time and quantization error % 2 - plot quantization error % 3 - plot quantization error and two first % components % 'trainlen' (scalar) training length (see also 'tlen_type') % 'trainlen_type' *(string) is the trainlen argument given in 'epochs' % or in 'samples'. Default is 'epochs'. % 'sample_order'*(string) is the sample order 'random' (which is the % the default) or 'ordered' in which case % samples are taken in the order in which they % appear in the data set % 'train' *(struct) train struct, parameters for training. % Default parameters, unless specified, % are acquired using SOM_TRAIN_STRUCT (this % also applies for 'trainlen', 'alpha_type', % 'alpha_ini', 'radius_ini' and 'radius_fin'). % 'sTrain', 'som_train' (struct) = 'train' % 'neigh' *(string) The used neighborhood function. Default is % the one in sM (field '.neigh') or 'gaussian' % if only a codebook matrix was given. Other % possible values is 'cutgauss', 'ep' and 'bubble'. % 'topol' *(struct) topology of the map. Default is the one % in sM (field '.topol'). % 'sTopol', 'som_topol' (struct) = 'topol' % 'alpha_type'*(string) learning rate function, 'inv', 'linear' or 'power' % 'lattice' *(string) map lattice. Default is the one in sM % (field sM.topol.lattice) or 'rect' % if only a codebook matrix was given. % 'shape' *(string) map shape. Default is the one in sM % (field sM.topol.shape) or 'sheet' % if only a codebook matrix was given. % % OUTPUT ARGUMENTS % % sM the trained map % (struct) if a map struct was given as input argument, a % map struct is also returned. The current training % is added to the training history (sM.trainhist). % The 'neigh' and 'mask' fields of the map struct % are updated to match those of the training. % (matrix) if a matrix was given as input argument, a matrix % is also returned with the same size as the input % argument. % sT (struct) train struct; information of the accomplished training % % EXAMPLES % % Simplest case: % sM = som_seqtrain(sM,D); % sM = som_seqtrain(sM,sD); % % To change the tracking level, 'tracking' argument is specified: % sM = som_seqtrain(sM,D,'tracking',3); % % The change training parameters, the optional arguments 'train', % 'neigh','mask','trainlen','radius','radius_ini', 'radius_fin', % 'alpha', 'alpha_type' and 'alpha_ini' are used. % sM = som_seqtrain(sM,D,'neigh','cutgauss','trainlen',10,'radius_fin',0); % % Another way to specify training parameters is to create a train struct: % sTrain = som_train_struct(sM,'dlen',size(D,1),'algorithm','seq'); % sTrain = som_set(sTrain,'neigh','cutgauss'); % sM = som_seqtrain(sM,D,sTrain); % % By default the neighborhood radius goes linearly from radius_ini to % radius_fin. If you want to change this, you can use the 'radius' argument % to specify the neighborhood radius for each step separately: % sM = som_seqtrain(sM,D,'radius',[5 3 1 1 1 1 0.5 0.5 0.5]); % % By default the learning rate (alpha) goes from the alpha_ini to 0 % along the function defined by alpha_type. If you want to change this, % you can use the 'alpha' argument to specify the learning rate % for each step separately: % alpha = 0.2*(1 - log([1:100])); % sM = som_seqtrain(sM,D,'alpha',alpha); % % You don't necessarily have to use the map struct, but you can operate % directly with codebook matrices. However, in this case you have to % specify the topology of the map in the optional arguments. The % following commads are identical (M is originally a 200 x dim sized matrix): % M = som_seqtrain(M,D,'msize',[20 10],'lattice','hexa','shape','cyl'); % % M = som_seqtrain(M,D,'msize',[20 10],'hexa','cyl'); % % sT= som_set('som_topol','msize',[20 10],'lattice','hexa','shape','cyl'); % M = som_seqtrain(M,D,sT); % % M = reshape(M,[20 10 dim]); % M = som_seqtrain(M,D,'hexa','cyl'); % % The som_seqtrain also returns a train struct with information on the % accomplished training. This is the same one as is added to the end of the % trainhist field of map struct, in case a map struct is given. % [M,sTrain] = som_seqtrain(M,D,'msize',[20 10]); % % [sM,sTrain] = som_seqtrain(sM,D); % sM.trainhist{end}==sTrain % % SEE ALSO % % som_make Initialize and train a SOM using default parameters. % som_batchtrain Train SOM with batch algorithm. % som_train_struct Determine default training parameters. % Copyright (c) 1997-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 1.0beta juuso 220997 % Version 2.0beta juuso 101199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Check arguments error(nargchk(2, Inf, nargin)); % check the number of input arguments % map struct_mode = isstruct(sMap); if struct_mode, sTopol = sMap.topol; else orig_size = size(sMap); if ndims(sMap) > 2, si = size(sMap); dim = si(end); msize = si(1:end-1); M = reshape(sMap,[prod(msize) dim]); else msize = [orig_size(1) 1]; dim = orig_size(2); end sMap = som_map_struct(dim,'msize',msize); sTopol = sMap.topol; end [munits dim] = size(sMap.codebook); % data if isstruct(D), data_name = D.name; D = D.data; else data_name = inputname(2); end D = D(find(sum(isnan(D),2) < dim),:); % remove empty vectors from the data [dlen ddim] = size(D); % check input dimension if dim ~= ddim, error('Map and data input space dimensions disagree.'); end % varargin sTrain = som_set('som_train','algorithm','seq','neigh', ... sMap.neigh,'mask',sMap.mask,'data_name',data_name); radius = []; alpha = []; tracking = 1; sample_order_type = 'random'; tlen_type = 'epochs'; i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, % argument IDs case 'msize', i=i+1; sTopol.msize = varargin{i}; case 'lattice', i=i+1; sTopol.lattice = varargin{i}; case 'shape', i=i+1; sTopol.shape = varargin{i}; case 'mask', i=i+1; sTrain.mask = varargin{i}; case 'neigh', i=i+1; sTrain.neigh = varargin{i}; case 'trainlen', i=i+1; sTrain.trainlen = varargin{i}; case 'trainlen_type', i=i+1; tlen_type = varargin{i}; case 'tracking', i=i+1; tracking = varargin{i}; case 'sample_order', i=i+1; sample_order_type = varargin{i}; case 'radius_ini', i=i+1; sTrain.radius_ini = varargin{i}; case 'radius_fin', i=i+1; sTrain.radius_fin = varargin{i}; case 'radius', i=i+1; l = length(varargin{i}); if l==1, sTrain.radius_ini = varargin{i}; else sTrain.radius_ini = varargin{i}(1); sTrain.radius_fin = varargin{i}(end); if l>2, radius = varargin{i}; tlen_type = 'samples'; end end case 'alpha_type', i=i+1; sTrain.alpha_type = varargin{i}; case 'alpha_ini', i=i+1; sTrain.alpha_ini = varargin{i}; case 'alpha', i=i+1; sTrain.alpha_ini = varargin{i}(1); if length(varargin{i})>1, alpha = varargin{i}; tlen_type = 'samples'; sTrain.alpha_type = 'user defined'; end case {'sTrain','train','som_train'}, i=i+1; sTrain = varargin{i}; case {'topol','sTopol','som_topol'}, i=i+1; sTopol = varargin{i}; if prod(sTopol.msize) ~= munits, error('Given map grid size does not match the codebook size.'); end % unambiguous values case {'inv','linear','power'}, sTrain.alpha_type = varargin{i}; case {'hexa','rect'}, sTopol.lattice = varargin{i}; case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; case {'gaussian','cutgauss','ep','bubble'}, sTrain.neigh = varargin{i}; case {'epochs','samples'}, tlen_type = varargin{i}; case {'random', 'ordered'}, sample_order_type = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}(1).type, case 'som_topol', sTopol = varargin{i}; if prod(sTopol.msize) ~= munits, error('Given map grid size does not match the codebook size.'); end case 'som_train', sTrain = varargin{i}; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_seqtrain) Ignoring invalid argument #' num2str(i+2)]); end i = i+1; end % training length if ~isempty(radius) | ~isempty(alpha), lr = length(radius); la = length(alpha); if lr>2 | la>1, tlen_type = 'samples'; if lr> 2 & la<=1, sTrain.trainlen = lr; elseif lr<=2 & la> 1, sTrain.trainlen = la; elseif lr==la, sTrain.trainlen = la; else error('Mismatch between radius and learning rate vector lengths.') end end end if strcmp(tlen_type,'samples'), sTrain.trainlen = sTrain.trainlen/dlen; end % check topology if struct_mode, if ~strcmp(sTopol.lattice,sMap.topol.lattice) | ... ~strcmp(sTopol.shape,sMap.topol.shape) | ... any(sTopol.msize ~= sMap.topol.msize), warning('Changing the original map topology.'); end end sMap.topol = sTopol; % complement the training struct sTrain = som_train_struct(sTrain,sMap,'dlen',dlen); if isempty(sTrain.mask), sTrain.mask = ones(dim,1); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% initialize M = sMap.codebook; mask = sTrain.mask; trainlen = sTrain.trainlen*dlen; % neighborhood radius if length(radius)>2, radius_type = 'user defined'; else radius = [sTrain.radius_ini sTrain.radius_fin]; rini = radius(1); rstep = (radius(end)-radius(1))/(trainlen-1); radius_type = 'linear'; end % learning rate if length(alpha)>1, sTrain.alpha_type ='user defined'; if length(alpha) ~= trainlen, error('Trainlen and length of neighborhood radius vector do not match.') end if any(isnan(alpha)), error('NaN is an illegal learning rate.') end else if isempty(alpha), alpha = sTrain.alpha_ini; end if strcmp(sTrain.alpha_type,'inv'), % alpha(t) = a / (t+b), where a and b are chosen suitably % below, they are chosen so that alpha_fin = alpha_ini/100 b = (trainlen - 1) / (100 - 1); a = b * alpha; end end % initialize random number generator rand('state',sum(100*clock)); % distance between map units in the output space % Since in the case of gaussian and ep neighborhood functions, the % equations utilize squares of the unit distances and in bubble case % it doesn't matter which is used, the unitdistances and neighborhood % radiuses are squared. Ud = som_unit_dists(sTopol).^2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Action update_step = 100; mu_x_1 = ones(munits,1); samples = ones(update_step,1); r = samples; alfa = samples; qe = 0; start = clock; if tracking > 0, % initialize tracking track_table = zeros(update_step,1); qe = zeros(floor(trainlen/update_step),1); end for t = 1:trainlen, % Every update_step, new values for sample indeces, neighborhood % radius and learning rate are calculated. This could be done % every step, but this way it is more efficient. Or this could % be done all at once outside the loop, but it would require much % more memory. ind = rem(t,update_step); if ind==0, ind = update_step; end if ind==1, steps = [t:min(trainlen,t+update_step-1)]; % sample order switch sample_order_type, case 'ordered', samples = rem(steps,dlen)+1; case 'random', samples = ceil(dlen*rand(update_step,1)+eps); end % neighborhood radius switch radius_type, case 'linear', r = rini+(steps-1)*rstep; case 'user defined', r = radius(steps); end r=r.^2; % squared radius (see notes about Ud above) r(r==0) = eps; % zero radius might cause div-by-zero error % learning rate switch sTrain.alpha_type, case 'linear', alfa = (1-steps/trainlen)*alpha; case 'inv', alfa = a ./ (b + steps-1); case 'power', alfa = alpha * (0.005/alpha).^((steps-1)/trainlen); case 'user defined', alfa = alpha(steps); end end % find BMU x = D(samples(ind),:); % pick one sample vector known = ~isnan(x); % its known components Dx = M(:,known) - x(mu_x_1,known); % each map unit minus the vector [qerr bmu] = min((Dx.^2)*mask(known)); % minimum distance(^2) and the BMU % tracking if tracking>0, track_table(ind) = sqrt(qerr); if ind==update_step, n = ceil(t/update_step); qe(n) = mean(track_table); trackplot(M,D,tracking,start,n,qe); end end % neighborhood & learning rate % notice that the elements Ud and radius have been squared! % (see notes about Ud above) switch sTrain.neigh, case 'bubble', h = (Ud(:,bmu)<=r(ind)); case 'gaussian', h = exp(-Ud(:,bmu)/(2*r(ind))); case 'cutgauss', h = exp(-Ud(:,bmu)/(2*r(ind))) .* (Ud(:,bmu)<=r(ind)); case 'ep', h = (1-Ud(:,bmu)/r(ind)) .* (Ud(:,bmu)<=r(ind)); end h = h*alfa(ind); % update M M(:,known) = M(:,known) - h(:,ones(sum(known),1)).*Dx; end; % for t = 1:trainlen %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Build / clean up the return arguments if tracking, fprintf(1,'\n'); end % update structures sTrain = som_set(sTrain,'time',datestr(now,0)); if struct_mode, sMap = som_set(sMap,'codebook',M,'mask',sTrain.mask,'neigh',sTrain.neigh); tl = length(sMap.trainhist); sMap.trainhist(tl+1) = sTrain; else sMap = reshape(M,orig_size); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% subfunctions %%%%%%%% function [] = trackplot(M,D,tracking,start,n,qe) l = length(qe); elap_t = etime(clock,start); tot_t = elap_t*l/n; fprintf(1,'\rTraining: %3.0f/ %3.0f s',elap_t,tot_t) switch tracking case 1, case 2, plot(1:n,qe(1:n),(n+1):l,qe((n+1):l)) title('Quantization errors for latest samples') drawnow otherwise, subplot(2,1,1), plot(1:n,qe(1:n),(n+1):l,qe((n+1):l)) title('Quantization error for latest samples'); subplot(2,1,2), plot(M(:,1),M(:,2),'ro',D(:,1),D(:,2),'b.'); title('First two components of map units (o) and data vectors (+)'); drawnow end % end of trackplot