Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_pieplane.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function h=som_pieplane(varargin) %SOM_PIEPLANE Visualize the map prototype vectors as pie charts % % h=som_pieplane(lattice, msize, data, [color], [s], [pos]) % h=som_pieplane(topol, data, [color], [s], [pos]) % % som_pieplane('hexa',[5 5], rand(25,4), jet(4), rand(25,1)) % som_pieplane(sM, sM.codebook); % % Input and output arguments ([]'s are optional): % lattice (string) grid 'hexa' or 'rect' % msize (vector) size 1x2, defines the grid, M=msize(1)*msize(2) % (matrix) size Mx2, gives explicit coordinates for each node: in % this case the lattice does not matter. % topol (struct) map or topology struct % data (matrix) size Mxd, Mth row is the data for Mth pie. The % values will be normalized to have unit sum in each row. % [color] (matrix) size dx3, RGB triples. The first row is the % color of the first slice in each pie etc. Default is hsv(d). % (string) ColorSpec or 'none' gives the same color for each slice. % [s] (matrix) size Mx1, gives an individual size scaling for each node. % (scalar) gives the same size for each node. Default is 0.8. % [pos] (vectors) a 1x2 vector that determines position for the % origin, i.e. upper left corner. Default is no translation. % % h (scalar) the object handle to the PATCH object % % The data will be linearly scaled so that its sum is 1 in each unit. % Negative values are invalid. Axis are set as in som_cplane. % % For more help, try 'type som_pieplane' or check out online documentation. % See also SOM_CPLANE, SOM_PLOTPLANE, SOM_BARPLANE %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_pieplane % % PURPOSE % % Visualizes the map prototype vectors as pie charts. % % SYNTAX % % h = som_pieplane(topol, data) % h = som_pieplane(lattice, msize, data) % h = som_pieplane(..., color) % h = som_pieplane(..., color, s) % h = som_pieplane(..., color, s, pos) % % DESCRIPTION % % Visualizes the map prototype vectors as pie charts. % % KNOWN BUGS % % It is not possible to specify explicit coordinates for map % consisting of just one unit as then the msize is interpreted as % map size. % % FEATURES % % - negative values in data cause an error % % - the colors are fixed: changing colormap in the figure (see help % colormap) will not affect the coloring of the slices. % % - if input variable s has size Nxd it gives each slice an individual % scaling factor. This may be used to create a glyph where % the radius of the slice, not the angle, shows the variable % try, e.g., som_pieplane('rect',[5 4],ones(20,4),'w',rand(20,4)); % % REQUIRED INPUT ARGUMENTS % % lattice The basic shape of the map units % % (string) 'hexa' or 'rect' positions the pies according to hexagonal or % rectangular map lattice. % % msize The size of the map grid % % (vector) [n1 n2] vector defines the map size (height n1 units, % width n2 units, total M=n1xn2 units). The units will % be placed to their topological locations to form a % uniform hexagonal or rectangular grid. % (matrix) Mx2 matrix defines arbitary coordinates for the M units. In % this case the argument 'lattice' has no effect. % % topol Topology of the map grid % % (struct) map or topology struct from which the topology is taken % % data The data to be visualized % % (matrix) Mxd matrix of data vectors. Negative values are invalid. % % OPTIONAL INPUT ARGUMENTS % % If value is unspecified or empty ([] or ''), the default values % are used for optional input arguments. % % s The size scaling factors for the units % % (scalar) gives each unit the same size scaling: % 0 unit disappears (edges can be seen as a dot) % ... default size is 0.8 % >1 unit overlaps others % (matrix) Mx1 double: each unit gets individual size scaling % % color The color of the slices in each pie % % (string) ColorSpec or 'none' gives the same color for each slice % (matrix) dx3 matrix assigns an RGB color determined by the dth row of % the matrix to the dth slice (variable) in each pie plot % % pos Position of origin % % (vector) size 1x2: this is meant for drawing the plane in arbitary % location in a figure. Note the operation: if this argument is % given, the axis limits setting part in the routine is skipped and % the limits setting will be left to be done by % MATLAB's defaults. Default is no translation. % % OUTPUT ARGUMENTS % % h (scalar) Handle to the created patch object. % % OBJECT TAGS % % One object handle is returned: field Tag is set to 'planePie' % % EXAMPLES % % %%% Create the data and make a map % % data=rand(100,5); map=som_make(data); % % %%% Create a 'jet' colormap that has as many rows as the data has variables % % colors=jet(5); % % %%% Draw pies % % som_pieplane(map, map.codebook, colors); % % %%% Calculate the hits of data on the map and normalize them between [0,1] % % hit=som_hits(map,data); hit=hit./max(max(hit)); % % %%% Draw the pies so that their size tells the hit count % % som_pieplane(map, map.codebook, colors, hit); % % %%% Try this! (see section FEATURES) % % som_pieplane('rect',[5 4],ones(20,4),'w',rand(20,4)); % % SEE ALSO % % som_cplane Visualize a 2D component plane, u-matrix or color plane % som_barplane Visualize the map prototype vectors as bar diagrams % som_plotplane Visualize the map prototype vectors as line graphs % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta Johan 140799 juuso 310300 070600 %%% Check & Init arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [nargin, lattice, msize, data, color, s, pos] = vis_planeGetArgs(varargin{:}); error(nargchk(3, 6, nargin)); % check no. of input args is correct % check pos if nargin < 6 | isempty(pos) pos=NaN; % default value for pos (no translation) elseif ~vis_valuetype(pos,{'1x2'}) error('Position of origin has to be given as an 1x2 vector'); end % check msize if ~vis_valuetype(msize,{'1x2','nx2'}), error('msize has to be 1x2 grid size vector or a Nx2 coordinate matrix.'); end % check data if ~isnumeric(data), error('Data matrix must be numeric.'); elseif length(size((data)))>2 error('Data matrix has too many dimensions!'); else d=size(data,2); N=size(data,1); end if any(data(:)<0) error('Negative data values not allowed in pie plots!'); end % Check lattice if ~ischar(lattice) | ~any(strcmp(lattice,{'hexa','rect'})), error('Invalid lattice.'); end %% Calculate patch coordinates for slices for i=1:N, [nx,ny]=vis_piepatch(data(i,:)); piesx(:,(1+(i-1)*d):(i*d))=nx; piesy(:,(1+(i-1)*d):(i*d))=ny; end l=size(piesx,1); if size(msize,1) == 1, if prod(msize) ~= N error('Data matrix has wrong size.'); else coord=som_vis_coords(lattice, msize); end else if N ~= size(msize,1), error('Data matrix has wrong size.'); end coord=msize; % This turns the axis tightening off, % as now we don't now the limits (no fixed grid) if isnan(pos); pos=[0 0]; end end x=reshape(repmat(coord(:,1),1,l*d)',l,d*N); y=reshape(repmat(coord(:,2),1,l*d)',l,d*N); % Check size if nargin < 5 | isempty(s), s=0.8; % default value for scaling elseif ~vis_valuetype(s, {'1x1', [N 1], [N d]}), error('Size matrix does not match with the data matrix.'); elseif size(s) == [N 1], s=reshape(repmat(s,1,l*d)',l,d*N); elseif all(size(s) ~= [1 1]), s=reshape(repmat(reshape(s',d*N,1),1,l)',l,d*N); end % Check color % C_FLAG is a flag for color 'none' if nargin < 4 | isempty(color) color=hsv(d); C_FLAG=0; % default n hsv colors end if ~(vis_valuetype(color, {[d 3], 'nx3rgb'},'all')) & ... ~vis_valuetype(color,{'colorstyle','1x3rgb'}), error('The color matrix has wrong size or contains invalid values.'); elseif ischar(color) & strcmp(color,'none'), C_FLAG=1; % check for color 'none' color='w'; else C_FLAG=0; % valid color string or colormap end %% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Size zero would cause division by zero. eps is as good (node disappears) % The edge may be visible, though. (NaN causes some other problems) s(s==0)=eps; %% 1. Scaling x=(x./s+piesx).*s; y=(y./s+piesy).*s; %% 2. Translation if ~isnan(pos) x=x+pos(1);y=y+pos(2); end %% 3. Rearrange dx3 color matrix if ~isstr(color) & size(color,1)~=1, color=reshape(repmat(color,N,1),[1 N*d 3]); end %% Set axes properties ax=newplot; % get current axis vis_PlaneAxisProperties(ax,lattice, msize, pos); %% Draw the plane! h_=patch(x,y,color); if C_FLAG set(h_,'FaceColor','none'); end set(h_,'Tag','planePie'); % tag the object %%% Build output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargout>0, h=h_; end % Set h only if % there really is output %%% Subfunctions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [x,y]=vis_piepatch(v) % Do a pie (see e.g. the MathWorks function PIE). % Origin is at (0,0) and the radius is .5. N=25; if sum(v)==0, v_is_zero = 1; v(1) = 1; else v_is_zero = 0; end v(v==0) = eps; % Matlab 5.2 version of linspace doesn't work otherwise phi=[0 2*pi*cumsum(v./sum(v))]; for i=2:length(phi), [xi,yi]=pol2cart(linspace(phi(i-1),phi(i),N),0.5); x(:,i-1)=[0 xi 0]'; y(:,i-1)=[0 yi 0]'; end if v_is_zero, x = x*0; y = y*0; end