Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_make.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function sMap = som_make(D, varargin) %SOM_MAKE Create, initialize and train Self-Organizing Map. % % sMap = som_make(D, [[argID,] value, ...]) % % sMap = som_make(D); % sMap = som_make(D, 'munits', 20); % sMap = som_make(D, 'munits', 20, 'hexa', 'sheet'); % sMap = som_make(D, 'msize', [4 6 7], 'lattice', 'rect'); % % Input and output arguments ([]'s are optional): % D (matrix) training data, size dlen x dim % (struct) data struct % [argID, (string) See below. The values which are unambiguous can % value] (varies) be given without the preceeding argID. % % sMap (struct) map struct % % Here are the valid argument IDs and corresponding values. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % 'init' *(string) initialization: 'randinit' or 'lininit' (default) % 'algorithm' *(string) training: 'seq' or 'batch' (default) or 'sompak' % 'munits' (scalar) the preferred number of map units % 'msize' (vector) map grid size % 'mapsize' *(string) do you want a 'small', 'normal' or 'big' map % Any explicit settings of munits or msize override this. % 'lattice' *(string) map lattice, 'hexa' or 'rect' % 'shape' *(string) map shape, 'sheet', 'cyl' or 'toroid' % 'neigh' *(string) neighborhood function, 'gaussian', 'cutgauss', % 'ep' or 'bubble' % 'topol' *(struct) topology struct % 'som_topol','sTopol' = 'topol' % 'mask' (vector) BMU search mask, size dim x 1 % 'name' (string) map name % 'comp_names' (string array / cellstr) component names, size dim x 1 % 'tracking' (scalar) how much to report, default = 1 % 'training' (string) 'short', 'default', 'long' % (vector) size 1 x 2, first length of rough training in epochs, % and then length of finetuning in epochs % % For more help, try 'type som_make' or check out online documentation. % See also SOM_MAP_STRUCT, SOM_TOPOL_STRUCT, SOM_TRAIN_STRUCT, % SOM_RANDINIT, SOM_LININIT, SOM_SEQTRAIN, SOM_BATCHTRAIN. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_make % % PURPOSE % % Creates, initializes and trains a SOM using default parameters. % % SYNTAX % % sMap = som_make(D); % sMap = som_make(...,'argID',value,...); % sMap = som_make(...,value,...); % % DESCRIPTION % % Creates, initializes and trains a SOM with default parameters. Uses functions % SOM_TOPOL_STRUCT, SOM_TRAIN_STRUCT, SOM_DATA_STRUCT and SOM_MAP_STRUCT to come % up with the default values. % % First, the number of map units is determined. Unless they are % explicitly defined, function SOM_TOPOL_STRUCT is used to determine this. % It uses a heuristic formula of 'munits = 5*dlen^0.54321'. The 'mapsize' % argument influences the final number of map units: a 'big' map has % x4 the default number of map units and a 'small' map has x0.25 the % default number of map units. % % After the number of map units has been determined, the map size is % determined. Basically, the two biggest eigenvalues of the training % data are calculated and the ratio between sidelengths of the map grid % is set to this ratio. The actual sidelengths are then set so that % their product is as close to the desired number of map units as % possible. % % Then the SOM is initialized. First, linear initialization along two % greatest eigenvectors is tried, but if this can't be done (the % eigenvectors cannot be calculated), random initialization is used % instead. After initialization, the SOM is trained in two phases: % first rough training and then fine-tuning. If the 'tracking' % argument is greater than zero, the average quantization error and % topographic error of the final map are calculated. % % REQUIRED INPUT ARGUMENTS % % D The data to use in the training. % (struct) A data struct. If a struct is given, '.comp_names' field as % well as '.comp_norm' field is copied to the map struct. % (matrix) A data matrix, size dlen x dim. The data matrix may % contain unknown values, indicated by NaNs. % % OPTIONAL INPUT ARGUMENTS % % argID (string) Argument identifier string (see below). % value (varies) Value for the argument (see below). % % Here are the valid argument IDs and corresponding values. The values % which are unambiguous (marked with '*') can be given without the % preceeding argID. % 'init' *(string) initialization: 'randinit' or 'lininit' (default) % 'algorithm' *(string) training: 'seq' or 'batch' (default) or 'sompak' % 'munits' (scalar) the preferred number of map units % 'msize' (vector) map grid size % 'mapsize' *(string) do you want a 'small', 'normal' or 'big' map % Any explicit settings of munits or msize override this. % 'lattice' *(string) map lattice, 'hexa' or 'rect' % 'shape' *(string) map shape, 'sheet', 'cyl' or 'toroid' % 'neigh' *(string) neighborhood function, 'gaussian', 'cutgauss', % 'ep' or 'bubble' % 'topol' *(struct) topology struct % 'som_topol','sTopol' = 'topol' % 'mask' (vector) BMU search mask, size dim x 1 % 'name' (string) map name % 'comp_names' (string array / cellstr) component names, size dim x 1 % 'tracking' (scalar) how much to report, default = 1 % 'training' (string) 'short', 'default' or 'long' % (vector) size 1 x 2, first length of rough training in epochs, % and then length of finetuning in epochs % % OUTPUT ARGUMENTS % % sMap (struct) the trained map struct % % EXAMPLES % % To simply train a map with default parameters: % % sMap = som_make(D); % % With the optional arguments, the initialization and training can be % influenced. To change map size, use 'msize', 'munits' or 'mapsize' % arguments: % % sMap = som_make(D,'mapsize','big'); or sMap=som_make(D,'big'); % sMap = som_make(D,'munits', 100); % sMap = som_make(D,'msize', [20 10]); % % Argument 'algorithm' can be used to switch between 'seq' and 'batch' % algorithms. 'batch' is the default, so to use 'seq' algorithm: % % sMap = som_make(D,'algorithm','seq'); or sMap = som_make(D,'seq'); % % The 'tracking' argument can be used to control the amout of reporting % during training. The argument is used in this function, and it is % passed to the training functions. To make the function work silently % set it to 0. % % sMap = som_make(D,'tracking',0); % % SEE ALSO % % som_map_struct Create a map struct. % som_topol_struct Default values for SOM topology. % som_train_struct Default values for SOM training parameters. % som_randinint Random initialization algorithm. % som_lininit Linear initialization algorithm. % som_seqtrain Sequential training algorithm. % som_batchtrain Batch training algorithm. % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 111199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% check arguments % D if isstruct(D) data_name = D.name; comp_names = D.comp_names; comp_norm = D.comp_norm; D = D.data; else data_name = inputname(1); sDummy = som_data_struct(D(1,:)); comp_names = sDummy.comp_names; comp_norm = sDummy.comp_norm; end [dlen dim] = size(D); % defaults mapsize = ''; sM = som_map_struct(dim); sTopol = sM.topol; munits = prod(sTopol.msize); % should be zero mask = sM.mask; name = sM.name; neigh = sM.neigh; tracking = 1; algorithm = 'batch'; initalg = 'lininit'; training = 'default'; % varargin i=1; while i<=length(varargin), argok = 1; if ischar(varargin{i}), switch varargin{i}, % argument IDs case 'mask', i=i+1; mask = varargin{i}; case 'munits', i=i+1; munits = varargin{i}; case 'msize', i=i+1; sTopol.msize = varargin{i}; munits = prod(sTopol.msize); case 'mapsize', i=i+1; mapsize = varargin{i}; case 'name', i=i+1; name = varargin{i}; case 'comp_names', i=i+1; comp_names = varargin{i}; case 'lattice', i=i+1; sTopol.lattice = varargin{i}; case 'shape', i=i+1; sTopol.shape = varargin{i}; case {'topol','som_topol','sTopol'}, i=i+1; sTopol = varargin{i}; munits = prod(sTopol.msize); case 'neigh', i=i+1; neigh = varargin{i}; case 'tracking', i=i+1; tracking = varargin{i}; case 'algorithm', i=i+1; algorithm = varargin{i}; case 'init', i=i+1; initalg = varargin{i}; case 'training', i=i+1; training = varargin{i}; % unambiguous values case {'hexa','rect'}, sTopol.lattice = varargin{i}; case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i}; case {'gaussian','cutgauss','ep','bubble'}, neigh = varargin{i}; case {'seq','batch','sompak'}, algorithm = varargin{i}; case {'small','normal','big'}, mapsize = varargin{i}; case {'randinit','lininit'}, initalg = varargin{i}; case {'short','default','long'}, training = varargin{i}; otherwise argok=0; end elseif isstruct(varargin{i}) & isfield(varargin{i},'type'), switch varargin{i}(1).type, case 'som_topol', sTopol = varargin{i}; otherwise argok=0; end else argok = 0; end if ~argok, disp(['(som_make) Ignoring invalid argument #' num2str(i+1)]); end i = i+1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% make the map struct %% map size if isempty(sTopol.msize) | ~prod(sTopol.msize), if tracking>0, fprintf(1,'Determining map size...\n'); end if ~munits, sTemp = som_topol_struct('dlen',dlen); munits = prod(sTemp.msize); switch mapsize, case 'small', munits = max(9,ceil(munits/4)); case 'big', munits = munits*4; otherwise % nil end end sTemp = som_topol_struct('data',D,'munits',munits); sTopol.msize = sTemp.msize; if tracking>0, fprintf(1,' map size [%d, %d]\n',sTopol.msize(1), sTopol.msize(2)); end end % map struct sMap = som_map_struct(dim,sTopol,neigh,'mask',mask,'name',name, ... 'comp_names', comp_names, 'comp_norm', comp_norm); % function if strcmp(algorithm,'sompak'), algorithm = 'seq'; func = 'sompak'; else func = algorithm; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% initialization if tracking>0, fprintf(1,'Initialization...\n'); end switch initalg, case 'randinit', sMap = som_randinit(D, sMap); case 'lininit', sMap = som_lininit(D, sMap); end sMap.trainhist(1) = som_set(sMap.trainhist(1),'data_name',data_name); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% training if tracking>0, fprintf(1,'Training using %s algorithm...\n',algorithm); end % rough train if tracking>0, fprintf(1,'Rough training phase...\n'); end sTrain = som_train_struct(sMap,'dlen',dlen,'algorithm',algorithm,'phase','rough'); sTrain = som_set(sTrain,'data_name',data_name); if isnumeric(training), sTrain.trainlen = training(1); else switch training, case 'short', sTrain.trainlen = max(1,sTrain.trainlen/4); case 'long', sTrain.trainlen = sTrain.trainlen*4; end end switch func, case 'seq', sMap = som_seqtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); case 'sompak', sMap = som_sompaktrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); case 'batch', sMap = som_batchtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); end % finetune if tracking>0, fprintf(1,'Finetuning phase...\n'); end sTrain = som_train_struct(sMap,'dlen',dlen,'phase','finetune'); sTrain = som_set(sTrain,'data_name',data_name,'algorithm',algorithm); if isnumeric(training), sTrain.trainlen = training(2); else switch training, case 'short', sTrain.trainlen = max(1,sTrain.trainlen/4); case 'long', sTrain.trainlen = sTrain.trainlen*4; end end switch func, case 'seq', sMap = som_seqtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); case 'sompak', sMap = som_sompaktrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); case 'batch', sMap = som_batchtrain(sMap,D,sTrain,'tracking',tracking,'mask',mask); end % quality if tracking>0, [mqe,tge] = som_quality(sMap,D); fprintf(1,'Final quantization error: %5.3f\n',mqe) fprintf(1,'Final topographic error: %5.3f\n',tge) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%