Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_estimate_gmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [K,P] = som_estimate_gmm(sM, sD) %SOM_ESTIMATE_GMM Estimate a gaussian mixture model based on map. % % [K,P] = som_estimate_gmm(sM, sD) % % Input and output arguments: % sM (struct) map struct % sD (struct) data struct % (matrix) size dlen x dim, the data to use when estimating % the gaussian kernels % % K (matrix) size munits x dim, kernel width parametes for % each map unit % P (vector) size 1 x munits, a priori probability of each map unit % % See also SOM_PROBABILITY_GMM. % Reference: Alhoniemi, E., Himberg, J., Vesanto, J., % "Probabilistic measures for responses of Self-Organizing Maps", % Proceedings of Computational Intelligence Methods and % Applications (CIMA), 1999, Rochester, N.Y., USA, pp. 286-289. % Contributed to SOM Toolbox vs2, February 2nd, 2000 by Esa Alhoniemi % Copyright (c) by Esa Alhoniemi % http://www.cis.hut.fi/projects/somtoolbox/ % ecco 180298 juuso 050100 250400 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [c, dim] = size(sM.codebook); M = sM.codebook; if isstruct(sD), D = sD.data; else D = sD; end dlen = length(D(:,1)); %%%%%%%%%%%%%%%%%%%%% % compute hits & bmus [bmus, qerrs] = som_bmus(sM, D); hits = zeros(1,c); for i = 1:c, hits(i) = sum(bmus == i); end %%%%%%%%%%%%%%%%%%%% % a priori % neighborhood kernel r = sM.trainhist(end).radius_fin; % neighborhood radius if isempty(r) | isnan(r), r=1; end Ud = som_unit_dists(sM); Ud = Ud.^2; r = r^2; if r==0, r=eps; end % to get rid of div-by-zero errors switch sM.neigh, case 'bubble', H = (Ud<=r); case 'gaussian', H = exp(-Ud/(2*r)); case 'cutgauss', H = exp(-Ud/(2*r)) .* (Ud<=r); case 'ep', H = (1-Ud/r) .* (Ud<=r); end % a priori prob. = hit histogram weighted by the neighborhood kernel P = hits*H; P = P/sum(P); %%%%%%%%%%%%%%%%%%%% % kernel widths (& centers) K = ones(c, dim) * NaN; % kernel widths for m = 1:c, w = H(bmus,m); w = w/sum(w); for i = 1:dim, d = (D(:,i) - M(m,i)).^2; % compute variance of ith K(m,i) = w'*d; % variable of centroid m end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%