Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_dreval.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [sig,cm,truex,truey] = som_dreval(sR,D,sigmea,inds1,inds2,andor) % SOM_DREVAL Evaluate the significance of the given descriptive rule. % % [sig,Cm,truex,truey] = som_dreval(cR,D,sigmea,[inds1],[inds2],[andor]) % % sR (struct) a rule struct, or an array of rule structs % D (matrix) the data, of size [dlen x nr] % sigmea (string) significance measure ('accuracy','accuracyI','mutuconf'), % see definitions below % [inds1] (vector) indeces belonging to the group % (by default: the whole data set) % [inds2] (vector) indeces belonging to the contrast group % (by default: the rest of the data set) % [andor] (string) 'and' or 'or': which conjunction operator to use % to join the rules for each variable % % sig (scalar) significance of the rule % cm (vector) length 4, vectorized confusion matrix ([a,c,b,d]: see below) % truex (vector) binary vector indicating for each item in the % group whether it was true or not % truey (vector) binary vector indicating for each item in the % contrast group whether it was true or not % % Descriptive rule significance is measured as the match between the % given groups (inds1 = G1, inds2 = G2) and the rule being true or false. % % G1 G2 % --------------- accuracy = (a+d) / (a+b+c+d) % true | a | b | % |-------------- mutuconf = a*a / ((a+b)(a+c)) % false | c | d | % --------------- accuracyI = a / (a+b+c) % % See also SOM_DRSIGNIF, SOM_DRMAKE. % Contributed to SOM Toolbox 2.0, March 4th, 2002 by Juha Vesanto % Copyright (c) by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 040302 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % input arguments if isstruct(D), switch D.type, case 'som_data', D = D.data; case 'som_map', D = D.codebook; end end [dlen,dim] = size(D); if nargin<4, inds1 = 1:dlen; end if nargin<5, i = ones(dlen,1); i(inds1) = 0; inds2 = find(i); end if nargin<6, andor = 'and'; end % initialize nr = length(sR); X = D(inds1,:); Y = D(inds2,:); nx = size(X,1); ny = size(Y,1); truex = ones(nx,1); truey = ones(ny,1); % go through the individual rules for i=1:nr, tx = (X(:,i)>=sR(i).low & X(:,i)<sR(i).high); tx(isnan(X(:,i))) = sR(i).nanis; ty = (Y(:,i)>=sR(i).low & Y(:,i)<sR(i).high); ty(isnan(Y(:,i))) = sR(i).nanis; switch andor, case 'and', truex = (truex & tx); truey = (truey & ty); case 'or', truex = (truex | tx); truey = (truey | ty); end end % evaluate criteria tix = sum(truex(isfinite(truex))); tiy = sum(truey(isfinite(truey))); cm = [tix,nx-tix,tiy,ny-tiy]; sig = som_drsignif(sigmea,cm); return;