Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_cldist.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function Cd = som_cldist(D,clinds1,clinds2,cldist,q,mask) % SOM_CLDIST Distances between two clusters. % % Cd = som_cldist(Md,c1,c2,'single') % Cd = som_cldist(Md,c1,c2,'average') % Cd = som_cldist(Md,c1,c2,'complete') % Cd = som_cldist(Md,c1,c2,'neighf',H) % Cd = som_cldist(Md,c1,[],...) % Cd = som_cldist(D,c1,c2,'centroid',q,mask) % Cd = som_cldist(D,c1,c2,'ward',q,mask) % Cd = som_cldist(D,c1,[],...) % % Input and output arguments ([]'s are optional): % D (matrix) size dlen x dim, the data set % (struct) map or data struct % Md (matrix) size dlen x dlen, mutual distance matrix, see SOM_MDIST % c1 (cell array) size n1 x 1, indices of clusters from which % the distances should be calculated, each cell % contains indices of vectors that belong to that % cluster (indices are between 1...dlen) % c2 (cell array) size n2 x 1, same as c1 but have the clusters % to which the distances should be calculated % (empty) c1 is used in place of c2 % [q] (scalar) distance norm, default = 2 % [mask] (vector) size dim x 1, the weighting mask, a vector of ones % by default % H (matrix) size dlen x dlen, neighborhood function values % % Cd (matrix) size n1 x n2, distances between the clusters % % See also SOM_MDIST. % Copyright (c) 2000 by Juha Vesanto % Contributed to SOM Toolbox on XXX by Juha Vesanto % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta juuso 250800 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [dlen dim] = size(D); if nargin<5, q = 2; end if nargin<6, mask = ones(dim,1); end if ~iscell(clinds1), clinds1 = {clinds1}; end if ~isempty(clinds2) & ~iscell(clinds2), clinds2 = {clinds2}; end n1 = length(clinds1); n2 = length(clinds2); if n2>0, Cd = zeros(n1,n2); else Cd = zeros(n1); end if n1==0, return; end switch cldist, % centroid distance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'centroid', C1 = zeros(n1,dim); for i=1:n1, C1(i,:) = mean(D(clinds1{i},:),1); end C2 = zeros(n2,dim); for i=1:n2, C2(i,:) = mean(D(clinds2{i},:),1); end if n2==0, for i=1:n1-1, for j=i+1:n1, diff = C1(i,:)-C1(j,:); switch q, case 1, Cd(i,j)=abs(diff)*mask; case 2, Cd(i,j)=sqrt((diff.^2)*mask); case Inf, Cd(i,j)=max(diag(mask)*abs(diff),[],2); otherwise, Cd(i,j)=((abs(diff).^q)*mask).^(1/q); end end Cd([(i+1):n1],i) = Cd(i,[(i+1):n1])'; end else for i=1:n1, for j=1:n2, diff = C1(i,:)-C2(j,:); switch q, case 1, Cd(i,j)=abs(diff)*mask; case 2, Cd(i,j)=sqrt((diff.^2)*mask); case Inf, Cd(i,j)=max(diag(mask)*abs(diff),[],2); otherwise, Cd(i,j)=((abs(diff).^q)*mask).^(1/q); end end end end % ward distance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'ward', C1 = zeros(n1,dim); nn1 = zeros(n1,dim); for i=1:n1, C1(i,:) = mean(D(clinds1{i},:),1); nn1(i) = length(clinds1{i}); end C2 = zeros(n2,dim); nn2 = zeros(n2,dim); for i=1:n2, C2(i,:) = mean(D(clinds2{i},:),1); nn2(i) = length(clinds2{i}); end if n2==0, for i=1:n1-1, for j=i+1:n1, diff = C1(i,:) - C1(j,:); f = 2*nn1(i)*nn1(j) / (nn1(i)+nn1(j)); switch q, case 1, Cd(i,j)=f*abs(diff)*mask; case 2, Cd(i,j)=f*sqrt((diff.^2)*mask); case Inf, Cd(i,j)=f*max(diag(mask)*abs(diff),[],2); otherwise, Cd(i,j)=f*((abs(diff).^q)*mask).^(1/q); end end Cd([(i+1):n1],i) = Cd(i,[(i+1):n1])'; end else for i=1:n1, for j=1:n2, diff = C1(i,:) - C2(j,:); f = 2*nn1(i)*nn2(j) / (nn1(i)+nn2(j)); switch q, case 1, Cd(i,j)=f*abs(diff)*mask; case 2, Cd(i,j)=f*sqrt((diff.^2)*mask); case Inf, Cd(i,j)=f*max(diag(mask)*abs(diff),[],2); otherwise, Cd(i,j)=f*((abs(diff).^q)*mask).^(1/q); end end end end % single linkage distance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'single', if n2==0, for i=1:n1-1, for j=i+1:n1, vd = D(clinds1{i},clinds1{j}); fi = isfinite(vd(:)); if any(fi), Cd(i,j) = min(vd(fi)); else Cd(i,j) = Inf; end end Cd([(i+1):n1],i) = Cd(i,[(i+1):n1])'; end else for i=1:n1, for j=1:n2, vd = D(clinds1{i},clinds2{j}); fi = isfinite(vd(:)); if any(fi), Cd(i,j) = min(vd(fi)); else Cd(i,j) = Inf; end end end end % average linkage distance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'average', if n2==0, for i=1:n1-1, for j=i+1:n1, vd = D(clinds1{i},clinds1{j}); fi = isfinite(vd(:)); if any(fi), Cd(i,j) = mean(vd(fi)); else Cd(i,j) = Inf; end end Cd([(i+1):n1],i) = Cd(i,[(i+1):n1])'; end else for i=1:n1, for j=1:n2, vd = D(clinds1{i},clinds2{j}); fi = isfinite(vd(:)); if any(fi), Cd(i,j) = mean(vd(fi)); else Cd(i,j) = Inf; end end end end % complete linkage distance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'complete', if n2==0, for i=1:n1-1, for j=i+1:n1, vd = D(clinds1{i},clinds1{j}); fi = isfinite(vd(:)); if any(fi), Cd(i,j) = max(vd(fi)); else Cd(i,j) = Inf; end end Cd([(i+1):n1],i) = Cd(i,[(i+1):n1])'; end else for i=1:n1, for j=1:n2, vd = D(clinds1{i},clinds2{j}); fi = isfinite(vd(:)); if any(fi), Cd(i,j) = max(vd(fi)); else Cd(i,j) = Inf; end end end end % neighborhood function linkage distance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case 'neighf', if n2==0, for i=1:n1-1, for j=i+1:n1, vd = D(clinds1{i},clinds1{j}); fi = isfinite(vd(:)); if any(fi), hd = q(clinds1{i},clinds1{j}); hd = hd(fi); Cd(i,j) = sum(hd.*vd(fi))/sum(hd); else Cd(i,j) = Inf; end end Cd([(i+1):n1],i) = Cd(i,[(i+1):n1])'; end else for i=1:n1, for j=1:n2, vd = D(clinds1{i},clinds2{j}); fi = isfinite(vd(:)); if any(fi), hd = q(clinds1{i},clinds2{j}); hd = hd(fi); Cd(i,j) = sum(hd.*vd(fi))/sum(hd); else Cd(i,j) = Inf; end end end end otherwise, error(['Unknown cluster distance metric: ' cldist]); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%