Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_barplane.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function h = som_barplane(varargin) %SOM_BARPLANE Visualize the map prototype vectors as bar charts % % h = som_barplane(lattice, msize, data, [color], [scaling], [gap], [pos]) % h = som_barplane(topol, data, [color], [scaling], [gap], [pos]) % % som_barplane('hexa',[5 5], rand(25,4), jet(4)) % som_barplane(sM, sM.codebook,'none') % % Input and output argumetns ([]'s are optional): % lattice (string) grid 'hexa' or 'rect' % msize (vector) size 1x2, defines the map grid size msize, M=prod(msize) % (matrix) size Mx2, gives explicit coordinates for each node: % in this case the first argument does not matter. % topol (struct) map or topology struct % data (matrix) size Mxd, each row defines heights of the bars % [color] (matrix) size dx3, of RGB triples. The rows define colors % for each bar in a node. Default is hsv(d). A ColorSpec or % (string) A ColorSpec or 'none' gives each bar the same color. % [scaling] (string) 'none', 'unitwise' or 'varwise'. The scaling % mode for the values. Default is 'varwise'. % [gap] (scalar) Defines the gap between bars, limits: 0 <= gap <= 1 % where 0=no gap, 1=bars are thin lines. Default is 0.25. % [pos] (vector) 1x2 vector defines the position of origin. % Default is [1 1]. % % h (scalar) the object handle to the PATCH object % % Axis are set as in SOM_CPLANE. % % For more help, try 'type som_barplane' or check out online documentation. % See also SOM_CPLANE, SOM_PLOTPLANE, SOM_PIEPLANE. %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % som_barplane % % PURPOSE % % Visualizes the map prototype vectors as bar charts. % % SYNTAX % % h = som_barplane(topol, data) % h = som_barplane(lattice, msize, data) % h = som_barplane(..., color) % h = som_barplane(..., color, scaling) % h = som_barplane(..., color, scaling, gap) % h = som_barplane(..., color, scaling, gap, pos) % % DESCRIPTION % % Visualizes the map prototype vectors as bar charts. % % REQUIRED INPUT ARGUMENTS % % lattice The basic shape of the map units % (string) 'hexa' or 'rect' positions the bar charts according to % hexagonal or rectangular map lattice % % msize The size of the map grid % (vector) [n1 n2] vector defines the map size (height: n1 units widht: n2 % units, total: M=n1xn2 units). The units will be placed to their % topological locations in order to form a uniform hexagonal or % rectangular grid. % (matrix) Mx2 matrix defines arbitary coordinates for the N units. In % this case the argument 'lattice' has no effect % % topol Topology of the map grid % % (struct) map or topology struct from which the topology is taken % % data The data to use when constructing the bar charts. % Typically, the map codebook or some of its components. % (matrix) Mxd matrix. A row defines heights of the bars. % % OPTIONAL INPUT ARGUMENTS % % Note: if unspecified or given an empty value ('' or []), default % values are used for optional input arguments. % % color The color of the bars in each pie % (ColorSpec) or (string) 'none' gives the same color for each slice. % (matrix) dx3 matrix assigns an RGB color determined by the dth row of % the matrix to the dth bar (variable) in each bar plot. % Default value is hsv(d). % % scaling How to scale the values % (string) 'none', 'unitwise' or 'varwise'. This determines the % scaling of codebook values when drawing the bars. % % 'none' don't scale at all. The bars are not limited % to remain inside he units' area: That is, if value of % some variable exceeds [-.625,.625] for 'rect' (and % in "worst case" [-.5,-.5] for 'hexa') the bars may % overlap other units. % % Base line (zero value line) % - is in the middle of the unit if data (codebook) contains both % negative and positive values (or is completely zero). % - is in the top the unit if data (codebook) contains only % non-positive values (everything <=0). % - is in the bottom the unit if data (codebook) contains only % non-negative values (everything >=0). % % 'varwise' scales values so that each variable is scaled separately % so that when it gets its overall maximum value, the % corresponding bar gets maximum range and for minimum value % it gets the minimum range. Baseline: see scaling 'none' % This is the default. % % 'unitwise' scales values in each unit individually so that the % bars for variables having minimum and maximum values have minimum % and maximum range inside each unit, respectively. % In this case the zero value line may move depending on the values. % % gap The gap between bars % (scalar) 0: no gap: bars are glued together % ... default value is 0.25 % 1: maximum gap: bars are thin lines % % pos Position of origin % (vector) size 1x2. This is meant for drawing the plane in arbitrary % location in a figure. Note the operation: if this argument is % given, the axis limits setting part in the routine is skipped and % the limits setting will be left to be done by MATLAB's defaults. % Default is [1 1]. % % OUTPUT ARGUMENTS % % h (scalar) handle to the created patch object % % OBJECT TAGS % % One object handle is returned: field Tag is set to 'planeBar' % % FEATURES % % - The colors are fixed: changing colormap in the figure (see help % colormap) will not change the coloring of the bars. % % EXAMPLES % % %%% Create the data and make a map % % data=rand(100,5); map=som_make(data); % % %%% Create a 'jet' colormap that has as many rows as the data has variables % % colors=jet(5); % % %%% Draw bars % % som_barplane(map.topol.lattice, map.topol.msize, map.codebook, colors); % or som_barplane(map.topol, map.codebook, colors); % or som_barplane(map, map.codebook, colors); % % %%% Draw the bars so that the gap between the bars is bigger and all % bars are black % % som_barplane(map, map.codebook, 'k', '', 0.6); % % SEE ALSO % % som_cplane Visualize a 2D component plane, u-matrix or color plane % som_plotplane Visualize the map prototype vectors as line graphs % som_pieplane Visualize the map prototype vectors as pie charts % Copyright (c) 1999-2000 by the SOM toolbox programming team. % http://www.cis.hut.fi/projects/somtoolbox/ % Version 2.0beta Juha P 110599, Johan 140799, juuso 151199 140300 070600 %%% Check & Init arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [nargin, lattice, msize, data, color, scaling, gap, pos] = vis_planeGetArgs(varargin{:}); error(nargchk(3, 7, nargin)) % check that no. of input args is correct % Check pos if nargin < 7 | isempty(pos) pos=NaN; % default value for pos (no translation) elseif ~vis_valuetype(pos,{'1x2'}) error('Position of origin has to be given as an 1x2 vector'); end % Check gap if nargin < 6 | isempty(gap), gap=0.25; % default value for gap elseif ~vis_valuetype(gap, {'1x1'}), error('Gap value must be scalar.'); elseif ~(gap >= 0 & gap<=1) error('Gap value must be in interval [0,1].') end % Check scaling if nargin < 5 | isempty(scaling), scaling='varwise'; elseif ~vis_valuetype(scaling,{'string'}) | ... ~any(strcmp(scaling,{'none','unitwise','varwise'})), error('scaling sholud be ''none'', ''unitwise'' or ''varwise''.'); end % Check msize if ~vis_valuetype(msize,{'1x2','nx2'}), error('msize has to be 1x2 grid size vector or a Nx2 coordinate matrix.'); end % Check data if ~isnumeric(data), error('Data matrix has to be numeric.'); elseif length(size((data)))>2 error('Data matrix has too many dimensions!'); else d=size(data,2); N=size(data,1); end s=.8; % patch size scaling factor switch scaling, case 'none' % no scaling: don't scale % Check data max and min values positive=any(data(:)>0); negative=any(data(:)<0); if (positive & negative) | (~positive & ~negative), % Data contains both negative and positive values (or is % completely zero) baseline to centre zeroline='zero'; elseif positive & ~negative % Data contains only positive values: baseline to bottom zeroline='bottom'; elseif ~positive & negative % Data contains only negative values: baseline to top zeroline='top'; end case 'unitwise' % scale the variables so that the bar for variable with the maximum % value in the unit spans to the upper edge of the unit % and the bar for the variable with minimum value spans to the lower edge, % respectively. zeroline='moving'; case 'varwise' % Check data max and min values positive=any(data(:)>0); negative=any(data(:)<0); if (positive & negative) | (~positive & ~negative), % Data contains both negative and positive values (or is % completely zero) baseline to % centre, scale data so that it doesn't overflow data=data./repmat(max(abs([max(data); min(data)])),N,1)*.5; zeroline='zero'; elseif positive & ~negative % Data contains only positive values: baseline to % bottom, scale data so that it doesn't overflow data=data./repmat(max(abs([max(data); min(data)])),N,1)*.5; zeroline='bottom'; elseif ~positive & negative % Data contains only negative values: baseline to % top, scale data so that it doesn't overflow zeroline='top'; data=data./repmat(max(abs([max(data); min(data)])),N,1)*.5; end otherwise error('Unknown scaling mode?'); end for i=1:N, % calculate patch coordinates for v=data(i,:); [nx,ny]=vis_barpatch(v,gap,zeroline); % bars barx(:,(1+(i-1)*d):(i*d))=s*nx; bary(:,(1+(i-1)*d):(i*d))=s*ny; end l=size(barx,1); if size(msize,1) == 1, xdim=msize(2); ydim=msize(1); if xdim*ydim~=N error('Data matrix has wrong size.'); else y=reshape(repmat(1:ydim,d,1),1,d*ydim); y=repmat(repmat(y,l,1),1,xdim); x=reshape(repmat(1:xdim,l*ydim*d,1),l,N*d); end else x=reshape(repmat(msize(:,1),1,l*d)',l,d*N); y=reshape(repmat(msize(:,2),1,l*d)',l,d*N); if N ~= size(msize,1), error('Data matrix has wrong size.'); else lattice='rect'; if isnan(pos), pos=[0 0]; end end end % Check lattice if ~ischar(lattice) error('Invalid lattice.'); end switch lattice case {'hexa','rect'} pos=pos-1; otherwise error([ 'Lattice' lattice ' not implemented!']); end % Check color % C_FLAG is for color 'none' if nargin < 4 | isempty(color) color=hsv(d); % default n hsv colors end if ~vis_valuetype(color, {[d 3],'nx3rgb'},'all') & ... ~vis_valuetype(color,{'colorstyle','1x3rgb'}) error('The color matrix has wrong size or has invalid values.'); elseif ischar(color) & strcmp(color,'none') C_FLAG=1; color='w'; else C_FLAG=0; end %% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Making lattice. % Command view([0 90]) shows the map in 2D properly oriented switch lattice case 'hexa' t=find(rem(y(1,:),2)); % move even rows by .5 x(:,t)=x(:,t)-.5; x=x+barx+.5; y=y+bary; case 'rect' x=x+barx; y=y+bary; end % NB: The coordinates in hexa are not uniform in order to get even % y-coordinates for the nodes. This is handled by setting _axis scaling_ % so that the hexa-nodes look like uniform hexagonals. See % vis_PlaneAxisProperties if ~isnan(pos) x=x+pos(1);y=y+pos(2); % move upper left corner end % to pos %% Set axes properties ax=newplot; % get current axis vis_PlaneAxisProperties(ax,lattice, msize, pos); %% Rearrange dx3 color matrix if ~isstr(color) & size(color,1)~=1, color=reshape(repmat(color,N,1),[1 N*d 3]); end %% Draw the plane! if isnumeric(color), % explicit color settings by RGB-triplets won't work with % patch in 'painters' mode, unless there only a single triplet si = size(color); if length(si)~=2 | any(si==[1 3]), set(gcf,'renderer','zbuffer'); end end h_=patch(x,y,color); if C_FLAG set(h_,'FaceColor','none'); end set(h_,'Tag','planeBar'); % tag the object %%% Build output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargout>0, h=h_; end % Set h only if % there really is output %%% Subfunctions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [xcoord,ycoord]=vis_barpatch(y,gap,zeroline) x = length(y); d = gap/(2*(x-1)+2); step= -.5:1/x:.5; miny=min(y); maxy=max(y); switch(zeroline) case 'moving' if miny < 0 if maxy > 0 zl = .5 - (abs(miny)/(maxy-miny)); %reverse mode y= .5 - ((y-miny*ones(1,x))./(maxy-miny)); else zl = -.5; y=-.5+abs(y./miny); end else zl = .5; %reverse mode y=.5-y./maxy; end case 'moveNotScale' if miny < 0 if maxy > 0 zl = 0.5+miny; y = zl - y; else zl=-.5; y=-.5+abs(y); end else zl=.5; y =.5-y; end case 'zero' zl=0; y=zl-y; case 'top' zl=-.5; y=zl-2*y; case 'bottom' zl=.5; y=zl-2*y; end for i=1:x xcoord(:,i) = [d+step(i);d+step(i);step(i+1)-d;step(i+1)-d;d+step(i)]; ycoord(:,i) = [zl;y(i);y(i);zl;zl]; end