Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/AuditoryToolbox/CorrelogramFrame.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% pic = CorrelogramFrame(data, picWidth, start, winLen) % Compute one frame of a correlogram. The input data is a % two-dimensional array of cochlear data, each row representing % firing probabilities from one cochlear channel. The output % picture is a two dimensional array of width "picWidth". % % The correlogram is computed with autocorrelation using % data from the input array. For each channel, the data from % is extracted starting at column "start" and extending for % "winLength" time steps. % (c) 1998 Interval Research Corporation function pic = CorrelogramFrame(data, picWidth, start, winLen) if nargin < 2 disp('Syntax: pic=CorrelogramFrame(data, picWidth[, start, len])'); return end if nargin < 3 start = 1; end if nargin < 4 [channels, winLen] = size(data); end [channels, dataLen] = size(data); start = max(1, start); last = min(dataLen, start+winLen-1); pic = zeros(channels, picWidth); fftSize = 2^(nextpow2(max(picWidth, winLen))+1); % disp(['CorrelogramFrame fftSize is ' int2str(fftSize)]); a = .54; b = -.46; wr = sqrt(64/256); phi = pi/winLen; ws = 2*wr/sqrt(4*a*a+2*b*b)*(a + b*cos(2*pi*(0:winLen-1)/winLen + phi)); for i=1:channels f = zeros(1, fftSize); % d = zeros(1, winLen); % d(1:(last-start+1)) = data(i,start:last) .* ws(1:(last-start+1)); % f(1:(winLen/2)) = d(winLen/2+1:winLen); % f(fftSize-(winLen/2)+1:fftSize) = d(1:min(length(d),winLen/2)); f(1:(last-start+1)) = data(i,start:last) .* ws(1:(last-start+1)); f = fft(f); f = ifft(f.*conj(f)); pic(i,:) = real(f(1:picWidth)); if pic(i,1) > pic(i,2) & pic(i,1) > pic(i,3) pic(i,:) = pic(i,:)/sqrt(pic(i,1)); else pic(i,:) = zeros(1,picWidth); end end