Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlabKPM/mlphess_weighted.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [h, hdata] = mlphess_weighted(net, x, t, eso_w, hdata) %MLPHESS Evaluate the Hessian matrix for a multi-layer perceptron network. % % Description % H = MLPHESS(NET, X, T) takes an MLP network data structure NET, a % matrix X of input values, and a matrix T of target values and returns % the full Hessian matrix H corresponding to the second derivatives of % the negative log posterior distribution, evaluated for the current % weight and bias values as defined by NET. % % [H, HDATA] = MLPHESS(NET, X, T) returns both the Hessian matrix H and % the contribution HDATA arising from the data dependent term in the % Hessian. % % H = MLPHESS(NET, X, T, HDATA) takes a network data structure NET, a % matrix X of input values, and a matrix T of target values, together % with the contribution HDATA arising from the data dependent term in % the Hessian, and returns the full Hessian matrix H corresponding to % the second derivatives of the negative log posterior distribution. % This version saves computation time if HDATA has already been % evaluated for the current weight and bias values. % % See also % MLP, HESSCHEK, MLPHDOTV, EVIDENCE % % Copyright (c) Ian T Nabney (1996-9) % Check arguments for consistency errstring = consist(net, 'mlp', x, t); if ~isempty(errstring); error(errstring); end if nargin == 4 % Data term in Hessian needs to be computed hdata = datahess(net, x, t, eso_w); end [h, hdata] = hbayes(net, hdata); % Sub-function to compute data part of Hessian function hdata = datahess(net, x, t, eso_w) hdata = zeros(net.nwts, net.nwts); for v = eye(net.nwts); hdata(find(v),:) = mlphdotv_weighted(net, x, t, eso_w, v); end return