Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlabKPM/mlpgrad_weighted.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [g, gdata, gprior] = mlpgrad_weighted(net, x, t, eso_w) %MLPGRAD Evaluate gradient of error function for 2-layer network. % % Description % G = MLPGRAD(NET, X, T) takes a network data structure NET together % with a matrix X of input vectors and a matrix T of target vectors, % and evaluates the gradient G of the error function with respect to % the network weights. The error funcion corresponds to the choice of % output unit activation function. Each row of X corresponds to one % input vector and each row of T corresponds to one target vector. % % [G, GDATA, GPRIOR] = MLPGRAD(NET, X, T) also returns separately the % data and prior contributions to the gradient. In the case of multiple % groups in the prior, GPRIOR is a matrix with a row for each group and % a column for each weight parameter. % % See also % MLP, MLPPAK, MLPUNPAK, MLPFWD, MLPERR, MLPBKP % % Copyright (c) Ian T Nabney (1996-9) % Check arguments for consistency errstring = consist(net, 'mlp', x, t); if ~isempty(errstring); error(errstring); end [y, z] = mlpfwd(net, x); temp = y - t; ndata = size(x, 1); for m=1:ndata, delout(m,:)=eso_w(m,1)*temp(m,:); end clear temp; gdata = mlpbkp(net, x, z, delout); [g, gdata, gprior] = gbayes(net, gdata);