Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlabKPM/glmhess_weighted.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [h, hdata] = glmhess_weighted(net, x, t, eso_w, hdata) %GLMHESS Evaluate the Hessian matrix for a generalised linear model. % % Description % H = GLMHESS(NET, X, T) takes a GLM network data structure NET, a % matrix X of input values, and a matrix T of target values and returns % the full Hessian matrix H corresponding to the second derivatives of % the negative log posterior distribution, evaluated for the current % weight and bias values as defined by NET. Note that the target data % is not required in the calculation, but is included to make the % interface uniform with NETHESS. For linear and logistic outputs, the % computation is very simple and is done (in effect) in one line in % GLMTRAIN. % % See also % GLM, GLMTRAIN, HESSCHEK, NETHESS % % Copyright (c) Ian T Nabney (1996-9) % Check arguments for consistency errstring = consist(net, 'glm', x, t); if ~isempty(errstring); error(errstring); end ndata = size(x, 1); nparams = net.nwts; nout = net.nout; p = glmfwd(net, x); inputs = [x ones(ndata, 1)]; if nargin == 4 hdata = zeros(nparams); % Full Hessian matrix % Calculate data component of Hessian switch net.outfn case 'softmax' bb_start = nparams - nout + 1; % Start of bias weights block ex_hess = zeros(nparams); % Contribution to Hessian from single example for m = 1:ndata X = x(m,:)'*x(m,:); a = diag(p(m,:))-((p(m,:)')*p(m,:)); a=eso_w(m,1)*a; ex_hess(1:nparams-nout,1:nparams-nout) = kron(a, X); ex_hess(bb_start:nparams, bb_start:nparams) = a.*ones(net.nout, net.nout); temp = kron(a, x(m,:)); ex_hess(bb_start:nparams, 1:nparams-nout) = temp; ex_hess(1:nparams-nout, bb_start:nparams) = temp'; hdata = hdata + ex_hess; end otherwise error(['Unknown activation function ', net.actfn]); end end [h, hdata] = hbayes(net, hdata);