Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/rbfbkp.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function g = rbfbkp(net, x, z, n2, deltas) %RBFBKP Backpropagate gradient of error function for RBF network. % % Description % G = RBFBKP(NET, X, Z, N2, DELTAS) takes a network data structure NET % together with a matrix X of input vectors, a matrix Z of hidden unit % activations, a matrix N2 of the squared distances between centres and % inputs, and a matrix DELTAS of the gradient of the error function % with respect to the values of the output units (i.e. the summed % inputs to the output units, before the activation function is % applied). The return value is the gradient G of the error function % with respect to the network weights. Each row of X corresponds to one % input vector. % % This function is provided so that the common backpropagation % algorithm can be used by RBF network models to compute gradients for % the output values (in RBFDERIV) as well as standard error functions. % % See also % RBF, RBFGRAD, RBFDERIV % % Copyright (c) Ian T Nabney (1996-2001) % Evaluate second-layer gradients. gw2 = z'*deltas; gb2 = sum(deltas); % Evaluate hidden unit gradients delhid = deltas*net.w2'; gc = zeros(net.nhidden, net.nin); ndata = size(x, 1); t1 = ones(ndata, 1); t2 = ones(1, net.nin); % Switch on activation function type switch net.actfn case 'gaussian' % Gaussian delhid = (delhid.*z); % A loop seems essential, so do it with the shortest index vector if (net.nin < net.nhidden) for i = 1:net.nin gc(:,i) = (sum(((x(:,i)*ones(1, net.nhidden)) - ... (ones(ndata, 1)*(net.c(:,i)'))).*delhid, 1)./net.wi)'; end else for i = 1:net.nhidden gc(i,:) = sum((x - (t1*(net.c(i,:)))./net.wi(i)).*(delhid(:,i)*t2), 1); end end gwi = sum((n2.*delhid)./(2.*(ones(ndata, 1)*(net.wi.^2))), 1); case 'tps' % Thin plate spline activation function delhid = delhid.*(1+log(n2+(n2==0))); for i = 1:net.nhidden gc(i,:) = sum(2.*((t1*(net.c(i,:)) - x)).*(delhid(:,i)*t2), 1); end % widths are not adjustable in this model gwi = []; case 'r4logr' % r^4 log r activation function delhid = delhid.*(n2.*(1+2.*log(n2+(n2==0)))); for i = 1:net.nhidden gc(i,:) = sum(2.*((t1*(net.c(i,:)) - x)).*(delhid(:,i)*t2), 1); end % widths are not adjustable in this model gwi = []; otherwise error('Unknown activation function in rbfgrad') end g = [gc(:)', gwi, gw2(:)', gb2];