Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/pca.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [PCcoeff, PCvec] = pca(data, N) %PCA Principal Components Analysis % % Description % PCCOEFF = PCA(DATA) computes the eigenvalues of the covariance % matrix of the dataset DATA and returns them as PCCOEFF. These % coefficients give the variance of DATA along the corresponding % principal components. % % PCCOEFF = PCA(DATA, N) returns the largest N eigenvalues. % % [PCCOEFF, PCVEC] = PCA(DATA) returns the principal components as well % as the coefficients. This is considerably more computationally % demanding than just computing the eigenvalues. % % See also % EIGDEC, GTMINIT, PPCA % % Copyright (c) Ian T Nabney (1996-2001) if nargin == 1 N = size(data, 2); end if nargout == 1 evals_only = logical(1); else evals_only = logical(0); end if N ~= round(N) | N < 1 | N > size(data, 2) error('Number of PCs must be integer, >0, < dim'); end % Find the sorted eigenvalues of the data covariance matrix if evals_only PCcoeff = eigdec(cov(data), N); else [PCcoeff, PCvec] = eigdec(cov(data), N); end