Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/olgd.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [net, options, errlog, pointlog] = olgd(net, options, x, t) %OLGD On-line gradient descent optimization. % % Description % [NET, OPTIONS, ERRLOG, POINTLOG] = OLGD(NET, OPTIONS, X, T) uses on- % line gradient descent to find a local minimum of the error function % for the network NET computed on the input data X and target values T. % A log of the error values after each cycle is (optionally) returned % in ERRLOG, and a log of the points visited is (optionally) returned % in POINTLOG. Because the gradient is computed on-line (i.e. after % each pattern) this can be quite inefficient in Matlab. % % The error function value at final weight vector is returned in % OPTIONS(8). % % The optional parameters have the following interpretations. % % OPTIONS(1) is set to 1 to display error values; also logs error % values in the return argument ERRLOG, and the points visited in the % return argument POINTSLOG. If OPTIONS(1) is set to 0, then only % warning messages are displayed. If OPTIONS(1) is -1, then nothing is % displayed. % % OPTIONS(2) is the precision required for the value of X at the % solution. If the absolute difference between the values of X between % two successive steps is less than OPTIONS(2), then this condition is % satisfied. % % OPTIONS(3) is the precision required of the objective function at the % solution. If the absolute difference between the error functions % between two successive steps is less than OPTIONS(3), then this % condition is satisfied. Both this and the previous condition must be % satisfied for termination. Note that testing the function value at % each iteration roughly halves the speed of the algorithm. % % OPTIONS(5) determines whether the patterns are sampled randomly with % replacement. If it is 0 (the default), then patterns are sampled in % order. % % OPTIONS(6) determines if the learning rate decays. If it is 1 then % the learning rate decays at a rate of 1/T. If it is 0 (the default) % then the learning rate is constant. % % OPTIONS(9) should be set to 1 to check the user defined gradient % function. % % OPTIONS(10) returns the total number of function evaluations % (including those in any line searches). % % OPTIONS(11) returns the total number of gradient evaluations. % % OPTIONS(14) is the maximum number of iterations (passes through the % complete pattern set); default 100. % % OPTIONS(17) is the momentum; default 0.5. % % OPTIONS(18) is the learning rate; default 0.01. % % See also % GRADDESC % % Copyright (c) Ian T Nabney (1996-2001) % Set up the options. if length(options) < 18 error('Options vector too short') end if (options(14)) niters = options(14); else niters = 100; end % Learning rate: must be positive if (options(18) > 0) eta = options(18); else eta = 0.01; end % Save initial learning rate for annealing lr = eta; % Momentum term: allow zero momentum if (options(17) >= 0) mu = options(17); else mu = 0.5; end pakstr = [net.type, 'pak']; unpakstr = [net.type, 'unpak']; % Extract initial weights from the network w = feval(pakstr, net); display = options(1); % Work out if we need to compute f at each iteration. % Needed if display results or if termination % criterion requires it. fcneval = (display | options(3)); % Check gradients if (options(9)) feval('gradchek', w, 'neterr', 'netgrad', net, x, t); end dwold = zeros(1, length(w)); fold = 0; % Must be initialised so that termination test can be performed ndata = size(x, 1); if fcneval fnew = neterr(w, net, x, t); options(10) = options(10) + 1; fold = fnew; end j = 1; if nargout >= 3 errlog(j, :) = fnew; if nargout == 4 pointlog(j, :) = w; end end % Main optimization loop. while j <= niters wold = w; if options(5) % Randomise order of pattern presentation: with replacement pnum = ceil(rand(ndata, 1).*ndata); else pnum = 1:ndata; end for k = 1:ndata grad = netgrad(w, net, x(pnum(k),:), t(pnum(k),:)); if options(6) % Let learning rate decrease as 1/t lr = eta/((j-1)*ndata + k); end dw = mu*dwold - lr*grad; w = w + dw; dwold = dw; end options(11) = options(11) + 1; % Increment gradient evaluation count if fcneval fold = fnew; fnew = neterr(w, net, x, t); options(10) = options(10) + 1; end if display fprintf(1, 'Iteration %5d Error %11.8f\n', j, fnew); end j = j + 1; if nargout >= 3 errlog(j) = fnew; if nargout == 4 pointlog(j, :) = w; end end if (max(abs(w - wold)) < options(2) & abs(fnew - fold) < options(3)) % Termination criteria are met options(8) = fnew; net = feval(unpakstr, net, w); return; end end if fcneval options(8) = fnew; else % Return error on entire dataset options(8) = neterr(w, net, x, t); options(10) = options(10) + 1; end if (options(1) >= 0) disp(maxitmess); end net = feval(unpakstr, net, w);