Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/mdndist2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function n2 = mdndist2(mixparams, t) %MDNDIST2 Calculates squared distance between centres of Gaussian kernels and data % % Description % N2 = MDNDIST2(MIXPARAMS, T) takes takes the centres of the Gaussian % contained in MIXPARAMS and the target data matrix, T, and computes % the squared Euclidean distance between them. If T has M rows and N % columns, then the CENTRES field in the MIXPARAMS structure should % have M rows and N*MIXPARAMS.NCENTRES columns: the centres in each row % relate to the corresponding row in T. The result has M rows and % MIXPARAMS.NCENTRES columns. The I, Jth entry is the squared distance % from the Ith row of X to the Jth centre in the Ith row of % MIXPARAMS.CENTRES. % % See also % MDNFWD, MDNPROB % % Copyright (c) Ian T Nabney (1996-2001) % David J Evans (1998) % Check arguments for consistency errstring = consist(mixparams, 'mdnmixes'); if ~isempty(errstring) error(errstring); end ncentres = mixparams.ncentres; dim_target = mixparams.dim_target; ntarget = size(t, 1); if ntarget ~= size(mixparams.centres, 1) error('Number of targets does not match number of mixtures') end if size(t, 2) ~= mixparams.dim_target error('Target dimension does not match mixture dimension') end % Build t that suits parameters, that is repeat t for each centre t = kron(ones(1, ncentres), t); % Do subtraction and square diff2 = (t - mixparams.centres).^2; % Reshape and sum each component diff2 = reshape(diff2', dim_target, (ntarget*ncentres))'; n2 = sum(diff2, 2); % Calculate the sum of distance, and reshape % so that we have a distance for each centre per target n2 = reshape(n2, ncentres, ntarget)';