Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/knn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function net = knn(nin, nout, k, tr_in, tr_targets) %KNN Creates a K-nearest-neighbour classifier. % % Description % NET = KNN(NIN, NOUT, K, TR_IN, TR_TARGETS) creates a KNN model NET % with input dimension NIN, output dimension NOUT and K neighbours. % The training data is also stored in the data structure and the % targets are assumed to be using a 1-of-N coding. % % The fields in NET are % type = 'knn' % nin = number of inputs % nout = number of outputs % tr_in = training input data % tr_targets = training target data % % See also % KMEANS, KNNFWD % % Copyright (c) Ian T Nabney (1996-2001) net.type = 'knn'; net.nin = nin; net.nout = nout; net.k = k; errstring = consist(net, 'knn', tr_in, tr_targets); if ~isempty(errstring) error(errstring); end net.tr_in = tr_in; net.tr_targets = tr_targets;