Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/glmderiv.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function g = glmderiv(net, x) %GLMDERIV Evaluate derivatives of GLM outputs with respect to weights. % % Description % G = GLMDERIV(NET, X) takes a network data structure NET and a matrix % of input vectors X and returns a three-index matrix mat{g} whose I, % J, K element contains the derivative of network output K with respect % to weight or bias parameter J for input pattern I. The ordering of % the weight and bias parameters is defined by GLMUNPAK. % % Copyright (c) Ian T Nabney (1996-2001) % Check arguments for consistency errstring = consist(net, 'glm', x); if ~isempty(errstring) error(errstring); end ndata = size(x, 1); if isfield(net, 'mask') nwts = size(find(net.mask), 1); mask_array = logical(net.mask)*ones(1, net.nout); else nwts = net.nwts; end g = zeros(ndata, nwts, net.nout); temp = zeros(net.nwts, net.nout); for n = 1:ndata % Weight matrix w1 temp(1:(net.nin*net.nout), :) = kron(eye(net.nout), (x(n, :))'); % Bias term b1 temp(net.nin*net.nout+1:end, :) = eye(net.nout); if isfield(net, 'mask') g(n, :, :) = reshape(temp(find(mask_array)), nwts, net.nout); else g(n, :, :) = temp; end end