Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/demhint.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function demhint(nin, nhidden, nout) %DEMHINT Demonstration of Hinton diagram for 2-layer feed-forward network. % % Description % % DEMHINT plots a Hinton diagram for a 2-layer feedforward network with % 5 inputs, 4 hidden units and 3 outputs. The weight vector is chosen % from a Gaussian distribution as described under MLP. % % DEMHINT(NIN, NHIDDEN, NOUT) allows the user to specify the number of % inputs, hidden units and outputs. % % See also % HINTON, HINTMAT, MLP, MLPPAK, MLPUNPAK % % Copyright (c) Ian T Nabney (1996-2001) if nargin < 1 nin = 5; end if nargin < 2 nhidden = 7; end if nargin < 3 nout = 3; end % Fix the seed for reproducible results randn('state', 42); clc disp('This demonstration illustrates the plotting of Hinton diagrams') disp('for Multi-Layer Perceptron networks.') disp(' ') disp('Press any key to continue.') pause net = mlp(nin, nhidden, nout, 'linear'); [h1, h2] = mlphint(net); clc disp('The MLP has been created with') disp([' ' int2str(nin) ' inputs']) disp([' ' int2str(nhidden) ' hidden units']) disp([' ' int2str(nout) ' outputs']) disp(' ') disp('One figure is produced for each layer of weights.') disp('For each layer the fan-in weights are arranged in rows for each unit.') disp('The bias weight is separated from the rest by a red vertical line.') disp('The area of each box is proportional to the weight value: positive') disp('values are white, and negative are black.') disp(' ') disp('Press any key to exit.'); pause; delete(h1); delete(h2);