Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/demgmm5.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
%DEMGMM5 Demonstrate density modelling with a PPCA mixture model. % % Description % The problem consists of modelling data generated by a mixture of % three Gaussians in 2 dimensions with a mixture model using full % covariance matrices. The priors are 0.3, 0.5 and 0.2; the centres % are (2, 3.5), (0, 0) and (0,2); the variances are (0.16, 0.64) axis % aligned, (0.25, 1) rotated by 30 degrees and the identity matrix. The % first figure contains a scatter plot of the data. % % A mixture model with three one-dimensional PPCA components is trained % using EM. The parameter vector is printed before training and after % training. The parameter vector consists of priors (the column), and % centres (given as (x, y) pairs as the next two columns). % % The second figure is a 3 dimensional view of the density function, % while the third shows the axes of the 1-standard deviation ellipses % for the three components of the mixture model together with the one % standard deviation along the principal component of each mixture % model component. % % See also % GMM, GMMINIT, GMMEM, GMMPROB, PPCA % % Copyright (c) Ian T Nabney (1996-2001) ndata = 500; data = randn(ndata, 2); prior = [0.3 0.5 0.2]; % Mixture model swaps clusters 1 and 3 datap = [0.2 0.5 0.3]; datac = [0 2; 0 0; 2 3.5]; datacov = repmat(eye(2), [1 1 3]); data1 = data(1:prior(1)*ndata,:); data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :); data3 = data((prior(1)+prior(2))*ndata +1:ndata, :); % First cluster has axis aligned variance and centre (2, 3.5) data1(:, 1) = data1(:, 1)*0.1 + 2.0; data1(:, 2) = data1(:, 2)*0.8 + 3.5; datacov(:, :, 3) = [0.1*0.1 0; 0 0.8*0.8]; % Second cluster has variance axes rotated by 30 degrees and centre (0, 0) rotn = [cos(pi/6) -sin(pi/6); sin(pi/6) cos(pi/6)]; data2(:,1) = data2(:, 1)*0.2; data2 = data2*rotn; datacov(:, :, 2) = rotn' * [0.04 0; 0 1] * rotn; % Third cluster is at (0,2) data3(:, 2) = data3(:, 2)*0.1; data3 = data3 + repmat([0 2], prior(3)*ndata, 1); % Put the dataset together again data = [data1; data2; data3]; ndata = 100; % Number of data points. noise = 0.2; % Standard deviation of noise distribution. x = [0:1/(2*(ndata - 1)):0.5]'; randn('state', 1); rand('state', 1); t = sin(2*pi*x) + noise*randn(ndata, 1); % Fit three one-dimensional PPCA models ncentres = 3; ppca_dim = 1; clc disp('This demonstration illustrates the use of a Gaussian mixture model') disp('with a probabilistic PCA covariance structure to approximate the') disp('unconditional probability density of data in a two-dimensional space.') disp('We begin by generating the data from a mixture of three Gaussians and') disp('plotting it.') disp(' ') disp('The first cluster has axis aligned variance and centre (0, 2).') disp('The variance parallel to the x-axis is significantly greater') disp('than that parallel to the y-axis.') disp('The second cluster has variance axes rotated by 30 degrees') disp('and centre (0, 0). The third cluster has significant variance') disp('parallel to the y-axis and centre (2, 3.5).') disp(' ') disp('Press any key to continue.') pause fh1 = figure; plot(data(:, 1), data(:, 2), 'o') set(gca, 'Box', 'on') axis equal hold on mix = gmm(2, ncentres, 'ppca', ppca_dim); options = foptions; options(14) = 10; options(1) = -1; % Switch off all warnings % Just use 10 iterations of k-means in initialisation % Initialise the model parameters from the data mix = gmminit(mix, data, options); disp('The mixture model has three components with 1-dimensional') disp('PPCA subspaces. The model parameters after initialisation using') disp('the k-means algorithm are as follows') disp(' Priors Centres') disp([mix.priors' mix.centres]) disp(' ') disp('Press any key to continue') pause options(1) = 1; % Prints out error values. options(14) = 30; % Number of iterations. disp('We now train the model using the EM algorithm for up to 30 iterations.') disp(' ') disp('Press any key to continue.') pause [mix, options, errlog] = gmmem(mix, data, options); disp('The trained model has priors and centres:') disp(' Priors Centres') disp([mix.priors' mix.centres]) % Now plot the result for i = 1:ncentres % Plot the PC vectors v = mix.U(:,:,i); start=mix.centres(i,:)-sqrt(mix.lambda(i))*(v'); endpt=mix.centres(i,:)+sqrt(mix.lambda(i))*(v'); linex = [start(1) endpt(1)]; liney = [start(2) endpt(2)]; line(linex, liney, 'Color', 'k', 'LineWidth', 3) % Plot ellipses of one standard deviation theta = 0:0.02:2*pi; x = sqrt(mix.lambda(i))*cos(theta); y = sqrt(mix.covars(i))*sin(theta); % Rotate ellipse axes rot_matrix = [v(1) -v(2); v(2) v(1)]; ellipse = (rot_matrix*([x; y]))'; % Adjust centre ellipse = ellipse + ones(length(theta), 1)*mix.centres(i,:); plot(ellipse(:,1), ellipse(:,2), 'r-') end disp(' ') disp('Press any key to exit') pause close (fh1); clear all;