Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/netlab3.3/demglm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
%DEMGLM1 Demonstrate simple classification using a generalized linear model. % % Description % The problem consists of a two dimensional input matrix DATA and a % vector of classifications T. The data is generated from two % Gaussian clusters, and a generalized linear model with logistic % output is trained using iterative reweighted least squares. A plot of % the data together with the 0.1, 0.5 and 0.9 contour lines of the % conditional probability is generated. % % See also % DEMGLM2, GLM, GLMTRAIN % % Copyright (c) Ian T Nabney (1996-2001) % Generate data from two classes in 2d input_dim = 2; % Fix seeds for reproducible results randn('state', 42); rand('state', 42); ndata = 100; % Generate mixture of two Gaussians in two dimensional space mix = gmm(2, 2, 'spherical'); mix.priors = [0.4 0.6]; % Cluster priors mix.centres = [2.0, 2.0; 0.0, 0.0]; % Cluster centres mix.covars = [0.5, 1.0]; [data, label] = gmmsamp(mix, ndata); targets = label - ones(ndata, 1); % Plot the result clc disp('This demonstration illustrates the use of a generalized linear model') disp('to classify data from two classes in a two-dimensional space. We') disp('begin by generating and plotting the data.') disp(' ') disp('Press any key to continue.') pause fh1 = figure; plot(data(label==1,1), data(label==1,2), 'bo'); hold on axis([-4 5 -4 5]) set(gca, 'box', 'on') plot(data(label==2,1), data(label==2,2), 'rx') title('Data') clc disp('Now we fit a model consisting of a logistic sigmoid function of') disp('a linear combination of the input variables.') disp(' ') disp('The model is trained using the IRLS algorithm for 5 iterations') disp(' ') disp('Press any key to continue.') pause net = glm(input_dim, 1, 'logistic'); options = foptions; options(1) = 1; options(14) = 5; net = glmtrain(net, options, data, targets); disp(' ') disp('We now plot some density contours given by this model.') disp('The contour labelled 0.5 is the decision boundary.') disp(' ') disp('Press any key to continue.') pause x = -4.0:0.2:5.0; y = -4.0:0.2:5.0; [X, Y] = meshgrid(x,y); X = X(:); Y = Y(:); grid = [X Y]; Z = glmfwd(net, grid); Z = reshape(Z, length(x), length(y)); v = [0.1 0.5 0.9]; [c, h] = contour(x, y, Z, v); title('Generalized Linear Model') set(h, 'linewidth', 3) clabel(c, h); clc disp('Note that the contours of constant density are straight lines.') disp(' ') disp('Press any key to end.') pause close(fh1); clear all;