Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/netevfwd.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual netevfwd </title> </head> <body> <H1> netevfwd </H1> <h2> Purpose </h2> Generic forward propagation with evidence for network <p><h2> Synopsis </h2> <PRE> [y, extra] = netevfwd(w, net, x, t, x_test) [y, extra, invhess] = netevfwd(w, net, x, t, x_test, invhess) </PRE> <p><h2> Description </h2> <CODE>[y, extra] = netevfwd(w, net, x, t, x_test)</CODE> takes a network data structure <CODE>net</CODE> together with the input <CODE>x</CODE> and target <CODE>t</CODE> training data and input test data <CODE>x_test</CODE>. It returns the normal forward propagation through the network <CODE>y</CODE> together with a matrix <CODE>extra</CODE> which consists of error bars (variance) for a regression problem or moderated outputs for a classification problem. <p>The optional argument (and return value) <CODE>invhess</CODE> is the inverse of the network Hessian computed on the training data inputs and targets. Passing it in avoids recomputing it, which can be a significant saving for large training sets. <p><h2> See Also </h2> <CODE><a href="mlpevfwd.htm">mlpevfwd</a></CODE>, <CODE><a href="rbfevfwd.htm">rbfevfwd</a></CODE>, <CODE><a href="glmevfwd.htm">glmevfwd</a></CODE>, <CODE><a href="fevbayes.htm">fevbayes</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>