Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/graddesc.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual graddesc </title> </head> <body> <H1> graddesc </H1> <h2> Purpose </h2> Gradient descent optimization. <p><h2> Description </h2> <CODE>[x, options, flog, pointlog] = graddesc(f, x, options, gradf)</CODE> uses batch gradient descent to find a local minimum of the function <CODE>f(x)</CODE> whose gradient is given by <CODE>gradf(x)</CODE>. A log of the function values after each cycle is (optionally) returned in <CODE>errlog</CODE>, and a log of the points visited is (optionally) returned in <CODE>pointlog</CODE>. <p>Note that <CODE>x</CODE> is a row vector and <CODE>f</CODE> returns a scalar value. The point at which <CODE>f</CODE> has a local minimum is returned as <CODE>x</CODE>. The function value at that point is returned in <CODE>options(8)</CODE>. <p><CODE>graddesc(f, x, options, gradf, p1, p2, ...)</CODE> allows additional arguments to be passed to <CODE>f()</CODE> and <CODE>gradf()</CODE>. <p>The optional parameters have the following interpretations. <p><CODE>options(1)</CODE> is set to 1 to display error values; also logs error values in the return argument <CODE>errlog</CODE>, and the points visited in the return argument <CODE>pointslog</CODE>. If <CODE>options(1)</CODE> is set to 0, then only warning messages are displayed. If <CODE>options(1)</CODE> is -1, then nothing is displayed. <p><CODE>options(2)</CODE> is the absolute precision required for the value of <CODE>x</CODE> at the solution. If the absolute difference between the values of <CODE>x</CODE> between two successive steps is less than <CODE>options(2)</CODE>, then this condition is satisfied. <p><CODE>options(3)</CODE> is a measure of the precision required of the objective function at the solution. If the absolute difference between the objective function values between two successive steps is less than <CODE>options(3)</CODE>, then this condition is satisfied. Both this and the previous condition must be satisfied for termination. <p><CODE>options(7)</CODE> determines the line minimisation method used. If it is set to 1 then a line minimiser is used (in the direction of the negative gradient). If it is 0 (the default), then each parameter update is a fixed multiple (the learning rate) of the negative gradient added to a fixed multiple (the momentum) of the previous parameter update. <p><CODE>options(9)</CODE> should be set to 1 to check the user defined gradient function <CODE>gradf</CODE> with <CODE>gradchek</CODE>. This is carried out at the initial parameter vector <CODE>x</CODE>. <p><CODE>options(10)</CODE> returns the total number of function evaluations (including those in any line searches). <p><CODE>options(11)</CODE> returns the total number of gradient evaluations. <p><CODE>options(14)</CODE> is the maximum number of iterations; default 100. <p><CODE>options(15)</CODE> is the precision in parameter space of the line search; default <CODE>foptions(2)</CODE>. <p><CODE>options(17)</CODE> is the momentum; default 0.5. It should be scaled by the inverse of the number of data points. <p><CODE>options(18)</CODE> is the learning rate; default 0.01. It should be scaled by the inverse of the number of data points. <p><h2> Examples </h2> An example of how this function can be used to train a neural network is: <PRE> options = zeros(1, 18); options(17) = 0.1/size(x, 1); net = netopt(net, options, x, t, 'graddesc'); </PRE> Note how the learning rate is scaled by the number of data points. <p><h2> See Also </h2> <CODE><a href="conjgrad.htm">conjgrad</a></CODE>, <CODE><a href="linemin.htm">linemin</a></CODE>, <CODE><a href="olgd.htm">olgd</a></CODE>, <CODE><a href="minbrack.htm">minbrack</a></CODE>, <CODE><a href="quasinew.htm">quasinew</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>