Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/gpinit.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual gpinit </title> </head> <body> <H1> gpinit </H1> <h2> Purpose </h2> Initialise Gaussian Process model. <p><h2> Synopsis </h2> <PRE> net = gpinit(net, trin, trtargets, prior) net = gpinit(net, trin, trtargets, prior) </PRE> <p><h2> Description </h2> <CODE>net = gpinit(net, trin, trtargets)</CODE> takes a Gaussian Process data structure <CODE>net</CODE> together with a matrix <CODE>trin</CODE> of training input vectors and a matrix <CODE>trtargets</CODE> of training target vectors, and stores them in <CODE>net</CODE>. These datasets are required if the corresponding inverse covariance matrix is not supplied to <CODE>gpfwd</CODE>. This is important if the data structure is saved and then reloaded before calling <CODE>gpfwd</CODE>. Each row of <CODE>trin</CODE> corresponds to one input vector and each row of <CODE>trtargets</CODE> corresponds to one target vector. <p><CODE>net = gpinit(net, trin, trtargets, prior)</CODE> additionally initialises the parameters in <CODE>net</CODE> from the <CODE>prior</CODE> data structure which contains the mean and variance of the Gaussian distribution which is sampled from. <p><h2> Example </h2> Suppose that a Gaussian Process model is created and trained with input data <CODE>x</CODE> and targets <CODE>t</CODE>: <PRE> net = gp(2, 'sqexp'); net = gpinit(net, x, t); % Train the network save 'gp.net' net; </PRE> Another Matlab program can now read in the network and make predictions on a data set <CODE>testin</CODE>: <PRE> load 'gp.net'; pred = gpfwd(net, testin); </PRE> <p><h2> See Also </h2> <CODE><a href="gp.htm">gp</a></CODE>, <CODE><a href="gpfwd.htm">gpfwd</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>