Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/gp.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual gp </title> </head> <body> <H1> gp </H1> <h2> Purpose </h2> Create a Gaussian Process. <p><h2> Synopsis </h2> <PRE> net = gp(nin, covarfn) net = gp(nin, covarfn, prior) </PRE> <p><h2> Description </h2> <p><CODE>net = gp(nin, covarfn)</CODE> takes the number of inputs <CODE>nin</CODE> for a Gaussian Process model with a single output, together with a string <CODE>covarfn</CODE> which specifies the type of the covariance function, and returns a data structure <CODE>net</CODE>. The parameters are set to zero. <p>The fields in <CODE>net</CODE> are <PRE> type = 'gp' nin = number of inputs nout = number of outputs: always 1 nwts = total number of weights and covariance function parameters bias = logarithm of constant offset in covariance function noise = logarithm of output noise variance inweights = logarithm of inverse length scale for each input covarfn = string describing the covariance function: 'sqexp' 'ratquad' fpar = covariance function specific parameters (1 for squared exponential, 2 for rational quadratic) trin = training input data (initially empty) trtargets = training target data (initially empty) </PRE> <p><CODE>net = gp(nin, covarfn, prior)</CODE> sets a Gaussian prior on the parameters of the model. <CODE>prior</CODE> must contain the fields <CODE>pr_mean</CODE> and <CODE>pr_variance</CODE>. If <CODE>pr_mean</CODE> is a scalar, then the Gaussian is assumed to be isotropic and the additional fields <CODE>net.pr_mean</CODE> and <CODE>pr_variance</CODE> are set. Otherwise, the Gaussian prior has a mean defined by a column vector of parameters <CODE>prior.pr_mean</CODE> and covariance defined by a column vector of parameters <CODE>prior.pr_variance</CODE>. Each element of <CODE>prmean</CODE> corresponds to a separate group of parameters, which need not be mutually exclusive. The membership of the groups is defined by the matrix <CODE>prior.index</CODE> in which the columns correspond to the elements of <CODE>prmean</CODE>. Each column has one element for each weight in the matrix, in the order defined by the function <CODE>gppak</CODE>, and each element is 1 or 0 according to whether the parameter is a member of the corresponding group or not. The additional field <CODE>net.index</CODE> is set in this case. <p><h2> See Also </h2> <CODE><a href="gppak.htm">gppak</a></CODE>, <CODE><a href="gpunpak.htm">gpunpak</a></CODE>, <CODE><a href="gpfwd.htm">gpfwd</a></CODE>, <CODE><a href="gperr.htm">gperr</a></CODE>, <CODE><a href="gpcovar.htm">gpcovar</a></CODE>, <CODE><a href="gpgrad.htm">gpgrad</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>