Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/demhmc3.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual demhmc3 </title> </head> <body> <H1> demhmc3 </H1> <h2> Purpose </h2> Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. <p><h2> Synopsis </h2> <PRE> demhmc3</PRE> <p><h2> Description </h2> The problem consists of one input variable <CODE>x</CODE> and one target variable <CODE>t</CODE> with data generated by sampling <CODE>x</CODE> at equal intervals and then generating target data by computing <CODE>sin(2*pi*x)</CODE> and adding Gaussian noise. The model is a 2-layer network with linear outputs, and the hybrid Monte Carlo algorithm (with persistence) is used to sample from the posterior distribution of the weights. The graph shows the underlying function, 300 samples from the function given by the posterior distribution of the weights, and the average prediction (weighted by the posterior probabilities). <p><h2> See Also </h2> <CODE><a href="demhmc2.htm">demhmc2</a></CODE>, <CODE><a href="hmc.htm">hmc</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlperr.htm">mlperr</a></CODE>, <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>