Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/nethelp3.3/demev2.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
<html> <head> <title> Netlab Reference Manual demev2 </title> </head> <body> <H1> demev2 </H1> <h2> Purpose </h2> Demonstrate Bayesian classification for the MLP. <p><h2> Synopsis </h2> <PRE> demev2</PRE> <p><h2> Description </h2> A synthetic two class two-dimensional dataset <CODE>x</CODE> is sampled from a mixture of four Gaussians. Each class is associated with two of the Gaussians so that the optimal decision boundary is non-linear. A 2-layer network with logistic outputs is trained by minimizing the cross-entropy error function with isotroipc Gaussian regularizer (one hyperparameter for each of the four standard weight groups), using the scaled conjugate gradient optimizer. The hyperparameter vectors <CODE>alpha</CODE> and <CODE>beta</CODE> are re-estimated using the function <CODE>evidence</CODE>. A graph is plotted of the optimal, regularised, and unregularised decision boundaries. A further plot of the moderated versus unmoderated contours is generated. <p><h2> See Also </h2> <CODE><a href="evidence.htm">evidence</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE>, <CODE><a href="demard.htm">demard</a></CODE>, <CODE><a href="demmlp2.htm">demmlp2</a></CODE><hr> <b>Pages:</b> <a href="index.htm">Index</a> <hr> <p>Copyright (c) Ian T Nabney (1996-9) </body> </html>