Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/graph/triangulate_test.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Test the code using the dag in Fig 1 of Jensen, Jensen, Dittmer, % "From influence diagrams to junction trees", UAI 94 % By reverse enginering Fig 2, we infer that the following arcs should % be absent from the original dag: b->d1, e->d2, f->d2, g->d4 a=1; b=2; d1=3; c=4; d=5; e=6; f=7; g=8; d2=9; d4=10; i=11; h=12; d3=13; l=14; j=15; k=16; dag=zeros(16); dag(a,c)=1; %dag(b,[c d d1])=1; dag(b,[c d])=1; dag(d1,d)=1; dag(c,e)=1; dag(d,[e f])=1; %dag(e,[g d2])=1; dag(e,[g])=1; %dag(f,[d2 h])=1; dag(f,[h])=1; %dag(g,[d4 i])=1; dag(g,[i])=1; dag(d2,i)=1; dag(d4,l)=1; dag(i,l)=1; dag(h,[j k])=1; dag(d3,k)=1; [MG, moral_edges] = moralize(dag); MG(j,k)=1; MG(k,j)=1; % simulate having a common utility child % MG now equals fig 2 order = [l j k i h a c d d4 g d3 d2 f e d1 b]; [MTG, cliques, fill_ins] = triangulate(MG, order); % MTG equals fig 3 ns = 2*ones(1,16); [jtree, root, cliques2] = mk_strong_jtree(cliques, ns, order, MTG); jtree2 = mk_rooted_tree(jtree, root); % jtree2 equals fig 4, with their arrows reversed