Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/graph/mk_2D_lattice.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function G = mk_2D_lattice(nrows, ncols, con) % MK_2D_LATTICE Return adjacency matrix for nearest neighbor connected 2D lattice % G = mk_2D_lattice(nrows, ncols, con) % G(k1, k2) = 1 iff k1=(i1,j1) is a neighbor of k2=(i2,j2) % (Two pixels are neighbors if their Euclidean distance is less than r.) % Default connectivity = 4. % % WE ASSUME NO WRAP AROUND. % % This is the neighborhood as a function of con: % % con=4,r=1 con=8,r=sqrt(2) con=12,r=2 con=24,r=sqrt(8) % nn 2nd order 4th order % x x x x x x % x x x x x x x x x x x x % x o x x o x x x o x x x x o x x % x x x x x x x x x x x x % x x x x x x % % Examples: % Consider a 3x4 grid % 1 4 7 10 % 2 5 8 11 % 3 6 9 12 % % 4-connected: % G=mk_2D_lattice(3,4,4); % find(G(1,:)) = [2 4] % find(G(5,:)) = [2 4 6 8] % % 8-connected: % G=mk_2D_lattice(3,4,8); % find(G(1,:)) = [2 4 5] % find(G(5,:)) = [1 2 3 4 6 7 8 9] % meshgrid trick due to Temu Gautama (temu@neuro.kuleuven.ac.be) if nargin < 3, con = 4; end switch con, case 4, r = 1; case 8, r = sqrt(2); case 12, r = 2; case 24, r = sqrt(8); otherwise, error(['unrecognized connectivity ' num2str(con)]) end npixels = nrows*ncols; [x y]=meshgrid(1:ncols, 1:nrows); M = [x(:) y(:)]; M1 = repmat(reshape(M',[1 2 npixels]),[npixels 1 1]); M2 = repmat(M,[1 1 npixels]); %D = squeeze(sum(abs(M1-M2),2)); % Manhattan distance M3 = M1-M2; D = sqrt(squeeze(M3(:,1,:)) .^2 + squeeze(M3(:,2,:)) .^2); % Euclidean distance G = reshape(D <= r,npixels,npixels); G = setdiag(G, 0);