Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/graph/check_triangulated.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [triangulated, order] = check_triangulated(G) % CHECK_TRIANGULATED Return 1 if G is a triangulated (chordal) graph, 0 otherwise. % [triangulated, order] = check_triangulated(G) % % A numbering alpha is perfect if Nbrs(alpha(i)) intersect {alpha(1)...alpha(i-1)} is complete. % A graph is triangulated iff it has a perfect numbering. % The Maximum Cardinality Search algorithm will create such a perfect numbering if possible. % See Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Cambridge Univ. Press, 1985, p85. % or Castillo, Gutierrez and Hadi, "Expert systems and probabilistic network models", Springer 1997, p134. G = setdiag(G, 1); n = length(G); order = zeros(1,n); triangulated = 1; numbered = [1]; order(1) = 1; for i=2:n U = mysetdiff(1:n, numbered); % unnumbered nodes score = zeros(1, length(U)); for ui=1:length(U) u = U(ui); score(ui) = length(myintersect(neighbors(G, u), numbered)); end u = U(argmax(score)); numbered = [numbered u]; order(i) = u; nns = myintersect(neighbors(G,u), order(1:i-1)); % numbered neighbors if ~isequal(G(nns,nns), ones(length(nns))) % ~complete(G(nns,nns)) triangulated = 0; break; end end