Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/graph/Old/mk_2D_lattice_slow.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function G = mk_2D_lattice(nrows, ncols, wrap_around) % MK_2D_LATTICE Return adjacency matrix for 4-nearest neighbor connected 2D lattice % G = mk_2D_lattice(nrows, ncols, wrap_around) % G(k1, k2) = 1 iff k1=(i1,j1) is connected to k2=(i2,j2) % % If wrap_around = 1, we use toroidal boundary conditions (default = 0) % % Nodes are assumed numbered as in the following 3x3 lattice % 1 4 7 % 2 5 8 % 3 6 9 % % e.g., G = mk_2D_lattice(3, 3, 0) returns % 0 1 0 1 0 0 0 0 0 % 1 0 1 0 1 0 0 0 0 % 0 1 0 0 0 1 0 0 0 % 1 0 0 0 1 0 1 0 0 % 0 1 0 1 0 1 0 1 0 % 0 0 1 0 1 0 0 0 1 % 0 0 0 1 0 0 0 1 0 % 0 0 0 0 1 0 1 0 1 % 0 0 0 0 0 1 0 1 0 % so find(G(5,:)) = [2 4 6 8] % but find(G(1,:)) = [2 4] % % Using wrap around, G = mk_2D_lattice(3, 3, 1), we get % 0 1 1 1 0 0 1 0 0 % 1 0 1 0 1 0 0 1 0 % 1 1 0 0 0 1 0 0 1 % 1 0 0 0 1 1 1 0 0 % 0 1 0 1 0 1 0 1 0 % 0 0 1 1 1 0 0 0 1 % 1 0 0 1 0 0 0 1 1 % 0 1 0 0 1 0 1 0 1 % 0 0 1 0 0 1 1 1 0 % so find(G(5,:)) = [2 4 6 8] % and find(G(1,:)) = [2 3 4 7] if nargin < 3, wrap_around = 0; end % M contains the number of each cell e.g. % 1 4 7 % 2 5 8 % 3 6 9 % North neighbors (assuming wrap around) are % 3 6 9 % 1 4 7 % 2 5 8 % Without wrap around, they are % 1 4 7 % 1 4 7 % 2 5 8 % The first row is arbitrary, since pixels at the top have no north neighbor. npixels = nrows*ncols; N = 1; E = 2; S = 3; W = 4; if wrap_around rows{N} = [nrows 1:nrows-1]; cols{N} = 1:ncols; rows{E} = 1:nrows; cols{E} = [2:ncols 1]; rows{S} = [2:nrows 1]; cols{S} = 1:ncols; rows{W} = 1:nrows; cols{W} = [ncols 1:ncols-1]; else rows{N} = [1 1:nrows-1]; cols{N} = 1:ncols; rows{E} = 1:nrows; cols{E} = [2:ncols 2]; rows{S} = [2:nrows 2]; cols{S} = 1:ncols; rows{W} = 1:nrows; cols{W} = [1 1:ncols-1]; end M = reshape(1:npixels, [nrows ncols]); nbrs = cell(1, 4); for i=1:4 nbrs{i} = M(rows{i}, cols{i}); end G = zeros(npixels, npixels); if wrap_around for i=1:4 if 0 % naive for p=1:npixels G(p, nbrs{i}(p)) = 1; end else % vectorized ndx2 = sub2ind([npixels npixels], 1:npixels, nbrs{i}(:)'); G(ndx2) = 1; end end else i = N; mask = ones(nrows, ncols); mask(1,:) = 0; % pixels in row 1 have no nbr to the north ndx = find(mask); ndx2 = sub2ind([npixels npixels], ndx, nbrs{i}(ndx)); G(ndx2) = 1; i = E; mask = ones(nrows, ncols); mask(:,ncols) = 0; ndx = find(mask); ndx2 = sub2ind([npixels npixels], ndx, nbrs{i}(ndx)); G(ndx2) = 1; i = S; mask = ones(nrows, ncols); mask(nrows,:)=0; ndx = find(mask); ndx2 = sub2ind([npixels npixels], ndx, nbrs{i}(ndx)); G(ndx2) = 1; i = W; mask = ones(nrows, ncols); mask(:,1)=0; ndx = find(mask); ndx2 = sub2ind([npixels npixels], ndx, nbrs{i}(ndx)); G(ndx2) = 1; end G = setdiag(G, 0);