Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/general/log_marg_lik_complete.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function L = log_marg_lik_complete(bnet, cases, clamped) % LOG_MARG_LIK_COMPLETE Compute sum_m sum_i log P(x(i,m)| x(pi_i,m)) for a completely observed data set % L = log_marg_lik_complete(bnet, cases, clamped) % % This differs from log_lik_complete because we integrate out the parameters. % If there is a missing data, you must use an inference engine. % cases(i,m) is the value assigned to node i in case m. % (If there are vector-valued nodes, cases should be a cell array.) % clamped(i,m) = 1 if node i was set by intervention in case m (default: clamped = zeros) % Clamped nodes contribute a factor of 1.0 to the likelihood. % % If there is a single case, clamped is a list of the clamped nodes, not a bit vector. if iscell(cases), usecell = 1; else usecell = 0; end n = length(bnet.dag); ncases = size(cases, 2); if n ~= size(cases, 1) error('data should be of size nnodes * ncases'); end if ncases == 1 if nargin < 3, clamped = []; end clamp_set = clamped; clamped = zeros(n,1); clamped(clamp_set) = 1; else if nargin < 3, clamped = zeros(n,ncases); end end L = 0; for i=1:n ps = parents(bnet.dag, i); e = bnet.equiv_class(i); u = find(clamped(i,:)==0); L = L + log_marg_prob_node(bnet.CPD{e}, cases(i,u), cases(ps,u)); end