Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/general/dbn_to_hmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [startprob, transprob, obsprob] = dbn_to_hmm(bnet) % DBN_TO_HMM % Convert DBN params to HMM params % [startprob, transprob, obsprob] = dbn_to_hmm(bnet, onodes) % startprob(i) % transprob(i,j) % obsprob{k}.big_CPT(i,o) if k'th observed node is discrete % obsprob{k}.big_mu(:,i), .big_Sigma(:,:,i) if k'th observed node is Gaussian % Big means the domain contains all the hidden discrete nodes, not just the parents. % Called by constructor and by update_engine ss = length(bnet.intra); onodes = bnet.observed; hnodes = mysetdiff(1:ss, onodes); evidence = cell(ss, 2); ns = bnet.node_sizes(:); Qh = prod(ns(hnodes)); tmp = dpot_to_table(compute_joint_pot(bnet, hnodes, evidence)); startprob = reshape(tmp, Qh, 1); tmp = dpot_to_table(compute_joint_pot(bnet, hnodes+ss, evidence, [hnodes hnodes+ss])); transprob = mk_stochastic(reshape(tmp, Qh, Qh)); % P(o|ps) is used by mk_hmm_obs_lik_vec for a single time slice % P(o|h) (the big version), where h = all hidden nodes, is used by enter_evidence obsprob = cell(1, length(onodes)); for i=1:length(onodes) o = onodes(i); if bnet.auto_regressive(o) % We assume the parents of this node are all the hidden nodes in the slice, % so the params already are "big". Also, we assume we regress only on our old selves. % slice 1 e = bnet.equiv_class(o); CPD = struct(bnet.CPD{e}); O = ns(o); ps = bnet.parents{o}; Qps = prod(ns(ps)); obsprob{i}.big_mu0 = reshape(CPD.mean, [O Qps]); obsprob{i}.big_Sigma0 = reshape(CPD.cov, [O O Qps]); % slice t>1 e = bnet.equiv_class(o+ss); CPD = struct(bnet.CPD{e}); O = ns(o); dps = mysetdiff(bnet.parents{o+ss}, o); Qdps = prod(ns(dps)); obsprob{i}.big_mu = reshape(CPD.mean, [O Qdps]); obsprob{i}.big_Sigma = reshape(CPD.cov, [O O Qdps]); obsprob{i}.big_W = reshape(CPD.weights, [O O Qdps]); else e = bnet.equiv_class(o+ss); CPD = struct(bnet.CPD{e}); O = ns(o); ps = bnet.parents{o}; Qps = prod(ns(ps)); % We make a big potential, replicating the params if necessary % e.g., for a 2 chain coupled HMM, mu(:,Q1) becomes mu(:,Q1,Q2) bigpot = pot_to_marginal(compute_joint_pot(bnet, onodes(i), evidence, [hnodes onodes(i)])); if myismember(o, bnet.dnodes) obsprob{i}.CPT = reshape(CPD.CPT, [Qps O]); obsprob{i}.big_CPT = reshape(bigpot.T, Qh, O); else obsprob{i}.big_mu = bigpot.mu; obsprob{i}.big_Sigma = bigpot.Sigma; if 1 obsprob{i}.mu = reshape(CPD.mean, [O Qps]); C = reshape(CPD.cov, [O O Qps]); obsprob{i}.Sigma = C; d = size(obsprob{i}.mu, 1); for j=1:Qps obsprob{i}.inv_Sigma(:,:,j) = inv(C(:,:,j)); obsprob{i}.denom(j) = (2*pi)^(d/2)*sqrt(abs(det(C(:,:,j)))); end end end % if discrete end % if ar end % for