Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/qmr1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Make a QMR-like network % This is a bipartite graph, where the top layer contains hidden disease nodes, % and the bottom later contains observed finding nodes. % The diseases have Bernoulli CPDs, the findings noisy-or CPDs. % See quickscore_inf_engine for references. pMax = 0.01; Nfindings = 10; Ndiseases = 5; %Nfindings = 20; %Ndiseases = 10; N=Nfindings+Ndiseases; findings = Ndiseases+1:N; diseases = 1:Ndiseases; G = zeros(Ndiseases, Nfindings); for i=1:Nfindings v= rand(1,Ndiseases); rents = find(v<0.8); if (length(rents)==0) rents=ceil(rand(1)*Ndiseases); end G(rents,i)=1; end prior = pMax*rand(1,Ndiseases); leak = 0.5*rand(1,Nfindings); % in real QMR, leak approx exp(-0.02) = 0.98 %leak = ones(1,Nfindings); % turns off leaks, which makes inference much harder inhibit = rand(Ndiseases, Nfindings); inhibit(not(G)) = 1; % first half of findings are +ve, second half -ve % The very first and last findings are hidden pos = 2:floor(Nfindings/2); neg = (pos(end)+1):(Nfindings-1); % Make the bnet in the straightforward way tabular_leaves = 0; obs_nodes = myunion(pos, neg) + Ndiseases; big_bnet = mk_qmr_bnet(G, inhibit, leak, prior, tabular_leaves, obs_nodes); big_evidence = cell(1, N); big_evidence(findings(pos)) = num2cell(repmat(2, 1, length(pos))); big_evidence(findings(neg)) = num2cell(repmat(1, 1, length(neg))); %clf;draw_layout(big_bnet.dag); %filename = '../public_html/Bayes/Figures/qmr.rnd.jpg'; %% 3x3 inches %set(gcf,'units','inches'); %set(gcf,'PaperPosition',[0 0 3 3]) %print(gcf,'-djpeg','-r100',filename); % Marginalize out hidden leaves apriori positive_leaves_only = 1; [bnet, vals] = mk_minimal_qmr_bnet(G, inhibit, leak, prior, pos, neg, positive_leaves_only); obs_nodes = bnet.observed; evidence = cell(1, Ndiseases + length(obs_nodes)); evidence(obs_nodes) = num2cell(vals); clear engine; engine{1} = quickscore_inf_engine(inhibit, leak, prior); engine{2} = jtree_inf_engine(big_bnet); engine{3} = jtree_inf_engine(bnet); %fname = '/home/cs/murphyk/matlab/Misc/loopybel.txt'; global BNT_HOME fname = sprintf('%s/loopybel.txt', BNT_HOME); max_iter = 6; engine{4} = pearl_inf_engine(bnet, 'protocol', 'parallel', 'max_iter', max_iter); %engine{5} = belprop_inf_engine(bnet, 'max_iter', max_iter, 'filename', fname); engine{5} = belprop_inf_engine(bnet, 'max_iter', max_iter); E = length(engine); exact = 1:3; loopy = [4 5]; ll = zeros(1,E); tic; engine{1} = enter_evidence(engine{1}, pos, neg); toc tic; [engine{2}, ll(2)] = enter_evidence(engine{2}, big_evidence); toc tic; [engine{3}, ll(3)] = enter_evidence(engine{3}, evidence); toc tic; [engine{4}, ll(4), niter(4)] = enter_evidence(engine{4}, evidence); toc tic; [engine{5}, niter(5)] = enter_evidence(engine{5}, evidence); toc ll post = zeros(E, Ndiseases); for e=1:E for i=diseases(:)' m = marginal_nodes(engine{e}, i); post(e, i) = m.T(2); end end for e=exact(:)' for i=diseases(:)' assert(approxeq(post(1, i), post(e, i))); end end a = zeros(Ndiseases, 2); for ei=1:length(loopy) for i=diseases(:)' a(i,ei) = approxeq(post(1, i), post(loopy(ei), i)); end end disp('is the loopy posterior correct?'); disp(a)