Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/mixexp2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Fit a piece-wise linear regression model. % Here is the model % % X \ % | | % Q | % | / % Y % % where all arcs point down. % We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian. % Q is hidden, X and Y are observed. X = 1; Q = 2; Y = 3; dag = zeros(3,3); dag(X,[Q Y]) = 1; dag(Q,Y) = 1; ns = [1 2 1]; % make X and Y scalars, and have 2 experts dnodes = [2]; onodes = [1 3]; bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes); IRLS_iter = 10; clamped = 0; bnet.CPD{1} = root_CPD(bnet, 1); if 0 % start with good initial params w = [-5 5]; % w(:,i) is the normal vector to the i'th decisions boundary b = [0 0]; % b(i) is the offset (bias) to the i'th decisions boundary mu = [0 0]; sigma = 1; Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]); W = [-1 1]; W2 = reshape(W, [ns(Y) ns(X) ns(Q)]); bnet.CPD{2} = softmax_CPD(bnet, 2, w, b, clamped, IRLS_iter); bnet.CPD{3} = gaussian_CPD(bnet, 3, mu, Sigma, W2); else % start with rnd initial params rand('state', 0); randn('state', 0); bnet.CPD{2} = softmax_CPD(bnet, 2, 'clamped', clamped, 'max_iter', IRLS_iter); bnet.CPD{3} = gaussian_CPD(bnet, 3); end load('/examples/static/Misc/mixexp_data.txt', '-ascii'); % Just use 1/10th of the data, to speed things up data = mixexp_data(1:10:end, :); %data = mixexp_data; %plot(data(:,1), data(:,2), '.') s = struct(bnet.CPD{2}); % violate object privacy %eta0 = [s.glim.b1; s.glim.w1]'; eta0 = [s.glim{1}.b1; s.glim{1}.w1]'; s = struct(bnet.CPD{3}); % violate object privacy W = reshape(s.weights, [1 2]); theta0 = [s.mean; W]'; %figure(1) %mixexp_plot(theta0, eta0, data); %suptitle('before learning') ncases = size(data, 1); cases = cell(3, ncases); cases([1 3], :) = num2cell(data'); engine = jtree_inf_engine(bnet); % log lik before learning ll = 0; for l=1:ncases ev = cases(:,l); [engine, loglik] = enter_evidence(engine, ev); ll = ll + loglik; end % do learning max_iter = 5; [bnet2, LL2] = learn_params_em(engine, cases, max_iter); s = struct(bnet2.CPD{2}); %eta2 = [s.glim.b1; s.glim.w1]'; eta2 = [s.glim{1}.b1; s.glim{1}.w1]'; s = struct(bnet2.CPD{3}); W = reshape(s.weights, [1 2]); theta2 = [s.mean; W]'; %figure(2) %mixexp_plot(theta2, eta2, data); %suptitle('after learning') fprintf('mixexp2: loglik before learning %f, after %d iters %f\n', ll, length(LL2), LL2(end));