Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/fgraph/fg_mrf2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
seed = 0; rand('state', seed); randn('state', seed); nrows = 5; ncols = 5; npixels = nrows*ncols; % we number pixels in transposed raster scan order (top to bottom, left to right) % H(i,j) is the number of the hidden node at (i,j) H = reshape(1:npixels, nrows, ncols); % O(i,j) is the number of the obsevred node at (i,j) O = reshape(1:npixels, nrows, ncols) + length(H(:)); % Make a Bayes net where each hidden pixel generates an observed pixel % but there are no connections between the hidden pixels. % We use this just to generate noisy versions of known images. N = 2*npixels; dag = zeros(N); for i=1:nrows for j=1:ncols dag(H(i,j), O(i,j)) = 1; end end K = 2; % number of discrete values for the hidden vars ns = ones(N,1); ns(H(:)) = K; ns(O(:)) = 1; % make image with vertical stripes I = zeros(nrows, ncols); for j=1:2:ncols I(:,j) = 1; end % each "hidden" node will be instantiated to the pixel in the known image % each observed node has conditional Gaussian distribution eclass = ones(1,N); %eclass(H(:)) = 1; %eclass(O(:)) = 2; eclass(H(:)) = 1:npixels; eclass(O(:)) = npixels+1; bnet = mk_bnet(dag, ns, 'discrete', H(:), 'equiv_class', eclass); %bnet.CPD{1} = tabular_CPD(bnet, H(1), 'CPT', normalise(ones(1,K))); for i=1:nrows for j=1:ncols bnet.CPD{H(i,j)} = root_CPD(bnet, H(i,j), I(i,j) + 1); end end % If H(i,j)=1, O(i,j)=+1 plus noise % If H(i,j)=2, O(i,j)=-1 plus noise sigma = 0.5; bnet.CPD{eclass(O(1,1))} = gaussian_CPD(bnet, O(1,1), 'mean', [1 -1], 'cov', reshape(sigma*ones(1,K), [1 1 K])); ofactor = bnet.CPD{eclass(O(1,1))}; %ofactor = gaussian_CPD('self', 2, 'dps', 1, 'cps', [], 'sz', [K O], 'mean', [1 -1], 'cov', reshape(sigma*ones(1,K), [1 1 K))); data = sample_bnet(bnet); img = reshape(data(O(:)), nrows, ncols) %%%%%%%%%%%%%%%%%%%%%%%%%%% % Now create MRF represented as a factor graph to try and recover the scene % VEF(i,j) is the number of the factor for the vertical edge between HV(i,j) - HV(i+1,j) VEF = reshape((1:(nrows-1)*ncols), nrows-1, ncols); % HEF(i,j) is the number of the factor for the horizontal edge between HV(i,j) - HV(i,j+1) HEF = reshape((1:nrows*(ncols-1)), nrows, ncols-1) + length(VEF(:)); nvars = npixels; nfac = length(VEF(:)) + length(HEF(:)); G = zeros(nvars, nfac); N = length(ns); eclass = zeros(1, nfac); % eclass(i)=j means factor i gets its params from factors{j} vfactor_ndx = 1; % all vertcial edges get their params from factors{1} hfactor_ndx = 2; % all vertcial edges get their params from factors{2} for i=1:nrows for j=1:ncols if i < nrows G(H(i:i+1,j), VEF(i,j)) = 1; eclass(VEF(i,j)) = vfactor_ndx; end if j < ncols G(H(i,j:j+1), HEF(i,j)) = 1; eclass(HEF(i,j)) = hfactor_ndx; end end end % "kitten raised in cage" prior - more likely to see continguous vertical lines vfactor = tabular_kernel([K K], softeye(K, 0.9)); hfactor = tabular_kernel([K K], softeye(K, 0.5)); factors = cell(1,2); factors{vfactor_ndx} = vfactor; factors{hfactor_ndx} = hfactor; ev_eclass = ones(1,N); % every observation factor gets is params from ofactor ns = K*ones(1,nvars); %fg = mk_fgraph_given_ev(G, ns, factors, {ofactor}, num2cell(img), 'equiv_class', eclass, 'ev_equiv_class', ev_eclass); fg = mk_fgraph_given_ev(G, ns, factors, {ofactor}, img, 'equiv_class', eclass, 'ev_equiv_class', ev_eclass); bnet2 = fgraph_to_bnet(fg); % inference maximize = 1; engine = {}; engine{1} = belprop_fg_inf_engine(fg, 'max_iter', npixels*2); engine{2} = jtree_inf_engine(bnet2); nengines = length(engine); % on fg, we have already included the evidence evidence = cell(1,npixels); tic; [engine{1}, ll(1)] = enter_evidence(engine{1}, evidence, 'maximize', maximize); toc % on bnet2, we must add evidence to the dummy nodes V = fg.nvars; dummy = V+1:V+fg.nfactors; N = max(dummy); evidence = cell(1, N); evidence(dummy) = {1}; tic; [engine{2}, ll(2)] = enter_evidence(engine{2}, evidence); toc Ihat = zeros(nrows, ncols, nengines); for e=1:nengines for i=1:nrows for j=1:ncols m = marginal_nodes(engine{e}, H(i,j)); Ihat(i,j,e) = argmax(m.T)-1; end end end Ihat