Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/fgraph/fg_mrf1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
seed = 0; rand('state', seed); randn('state', seed); nrows = 3; ncols = 3; npixels = nrows*ncols; % we number pixels in transposed raster scan order (top to bottom, left to right) % hidden var HV = reshape(1:npixels, nrows, ncols); % observed var OV = reshape(1:npixels, nrows, ncols) + length(HV(:)); % observed factor OF = reshape(1:npixels, nrows, ncols); % vertical edge factor VEF(i,j) is the factor for edge HV(i,j) - HV(i+1,j) VEF = reshape((1:(nrows-1)*ncols), nrows-1, ncols) + length(OF(:)); % horizontal edge factor HEF(i,j) is the factor for edge HV(i,j) - HV(i,j+1) HEF = reshape((1:nrows*(ncols-1)), nrows, ncols-1) + length(OF(:)) + length(VEF(:)); nvars = length(HV(:))+length(OV(:)); assert(nvars == 2*npixels); nfac = length(OF(:)) + length(VEF(:)) + length(HEF(:)); K = 2; % number of discrete values for the hidden vars %O = 1; % each observed pixel is a scalar O = 2; % each observed pixel is binary factors = cell(1,3); % hidden states generate observed 0 or 1 plus noise %factors{2} = cond_gauss1_kernel(K, O, 'mean', [0 1], 'cov', [0.1 0.1]); pnoise = 0.2; factors{1} = tabular_kernel([K O], [1-pnoise pnoise; pnoise 1-pnoise]); ofactor = 1; % encourage compatibility between neighboring vertical pixels factors{2} = tabular_kernel([K K], [0.8 0.2; 0.2 0.8]); vedge_factor = 2; %% no constraint between neighboring horizontal pixels %factors{3} = tabular_kernel([K K], [0.5 0.5; 0.5 0.5]); factors{3} = tabular_kernel([K K], [0.8 0.2; 0.2 0.8]); hedge_factor = 3; factor_ndx = zeros(1, 3); G = zeros(nvars, nfac); ns = [K*ones(1,length(HV(:))) O*ones(1,length(OV(:)))]; N = length(ns); %cnodes = OV(:); cnodes = []; dnodes = 1:N; for i=1:nrows for j=1:ncols G([HV(i,j), OV(i,j)], OF(i,j)) = 1; factor_ndx(OF(i,j)) = ofactor; if i < nrows G(HV(i:i+1,j), VEF(i,j)) = 1; factor_ndx(VEF(i,j)) = vedge_factor; end if j < ncols G(HV(i,j:j+1), HEF(i,j)) = 1; factor_ndx(HEF(i,j)) = hedge_factor; end end end fg = mk_fgraph(G, ns, factors, 'discrete', dnodes, 'equiv_class', factor_ndx); if 1 % make image with vertical stripes I = zeros(nrows, ncols); for j=1:2:ncols I(:,j) = 1; end else % make image with square in middle I = zeros(nrows, ncols); I(3:6,3:6) = 1; end % corrupt image O = mod(I + (rand(nrows,ncols)> (1-pnoise)), 2); maximize = 1; engine = belprop_fg_inf_engine(fg, 'maximize', maximize, 'max_iter', npixels*5); evidence = cell(1, nvars); onodes = OV(:); evidence(onodes) = num2cell(O+1); % values must be in range {1,2} engine = enter_evidence(engine, evidence); for i=1:nrows for j=1:ncols m = marginal_nodes(engine, HV(i,j)); Ihat(i,j) = argmax(m.T)-1; end end Ihat