Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/discrete3.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Compare various inference engines on the following network (from Jensen (1996) p84 fig 4.17) % 1 % / | \ % 2 3 4 % | | | % 5 6 7 % \/ \/ % 8 9 % where all arcs point downwards N = 9; dag = zeros(N,N); dag(1,2)=1; dag(1,3)=1; dag(1,4)=1; dag(2,5)=1; dag(3,6)=1; dag(4,7)=1; dag(5,8)=1; dag(6,8)=1; dag(6,9)=1; dag(7,9) = 1; dnodes = 1:N; false = 1; true = 2; ns = 2*ones(1,N); % binary nodes onodes = [1]; evidence = cell(1,N); evidence(onodes) = num2cell(1); bnet = mk_bnet(dag, ns, 'observed', onodes); % use random params %for i=1:N % bnet.CPD{i} = tabular_CPD(bnet, i); %end bnet.CPD{1} = tabular_CPD(bnet, 1, 'sparse', 1, 'CPT', [0.8, 0.2]); bnet.CPD{2} = tabular_CPD(bnet, 2, 'sparse', 1, 'CPT', [1 0 0 1]); bnet.CPD{3} = tabular_CPD(bnet, 3, 'sparse', 1, 'CPT', [0 1 1 0]); bnet.CPD{4} = tabular_CPD(bnet, 4, 'sparse', 1, 'CPT', [1 1 0 0]); bnet.CPD{5} = tabular_CPD(bnet, 5, 'sparse', 1, 'CPT', [0 0 1 1]); bnet.CPD{6} = tabular_CPD(bnet, 6, 'sparse', 1, 'CPT', [1 0 0 1]); bnet.CPD{7} = tabular_CPD(bnet, 7, 'sparse', 1, 'CPT', [0 1 1 0]); bnet.CPD{8} = tabular_CPD(bnet, 8, 'sparse', 1, 'CPT', [1 1 0 0 0 0 1 1]); bnet.CPD{9} = tabular_CPD(bnet, 9, 'sparse', 1, 'CPT', [0 1 0 1 1 0 1 0]); engine = jtree_sparse_inf_engine(bnet); tic [engine, ll] = enter_evidence(engine, evidence); toc