Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/SCG/scg_3node.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% This example is from Page.143 of "Probabilistic Networks and Expert Systems", % Cowell, Dawid, Lauritzen and Spiegelhalter, 1999, Springer. X = 1; Y = 2; Z = 3; n = 3; dag = zeros(n); dag(X, Y)=1; dag(Y, Z)=1; ns = ones(1, n); dnodes = []; bnet = mk_bnet(dag, ns, dnodes); bnet.CPD{X} = gaussian_CPD(bnet, X, 'mean', 0, 'cov', 1); bnet.CPD{Y} = gaussian_CPD(bnet, Y, 'mean', 0, 'cov', 1, 'weights', 1); bnet.CPD{Z} = gaussian_CPD(bnet, Z, 'mean', 0, 'cov', 1, 'weights', 1); engines = {}; engines{end+1} = jtree_inf_engine(bnet); engines{end+1} = stab_cond_gauss_inf_engine(bnet); nengines = length(engines); evidence = cell(1,n); evidence{Y} = 1.5; for e=1:nengines engines{e} = enter_evidence(engines{e}, evidence); margX = marginal_nodes(engines{e}, X); assert(approxeq(margX.mu, 0.75)) assert(approxeq(margX.Sigma, 0.5)) margZ = marginal_nodes(engines{e}, Z); assert(approxeq(margZ.mu, 1.5)) assert(approxeq(margZ.Sigma, 1)) end evidence = cell(1,n); evidence{Z} = 1.5; for e=1:nengines engines{e} = enter_evidence(engines{e}, evidence); margX = marginal_nodes(engines{e}, X); assert(approxeq(margX.mu, 1/2)) assert(approxeq(margX.Sigma, 2/3)) margY = marginal_nodes(engines{e}, Y); assert(approxeq(margY.mu, 1)) assert(approxeq(margY.Sigma, 2/3)) end