Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/Brutti/Belief_IOhmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Sigmoid Belief IOHMM % Here is the model % % X \ X \ % | | | | % Q-|->Q-|-> ... % | / | / % Y Y % clear all; clc; rand('state',0); randn('state',0); X = 1; Q = 2; Y = 3; % intra time-slice graph intra=zeros(3); intra(X,[Q Y])=1; intra(Q,Y)=1; % inter time-slice graph inter=zeros(3); inter(Q,Q)=1; ns = [1 3 1]; dnodes = [2]; eclass1 = [1 2 3]; eclass2 = [1 4 3]; bnet = mk_dbn(intra, inter, ns, dnodes, eclass1, eclass2); bnet.CPD{1} = root_CPD(bnet, 1); % ========================================================== bnet.CPD{2} = softmax_CPD(bnet, 2); bnet.CPD{4} = softmax_CPD(bnet, 5, 'discrete', [2]); % ========================================================== bnet.CPD{3} = gaussian_CPD(bnet, 3); % make some data T=20; cases = cell(3, T); cases(1,:)=num2cell(round(rand(1,T)*2)+1); %cases(2,:)=num2cell(round(rand(1,T))+1); cases(3,:)=num2cell(rand(1,T)); engine = bk_inf_engine(bnet, 'exact', [1 2 3]); % log lik before learning [engine, loglik] = enter_evidence(engine, cases); % do learning ev=cell(1,1); ev{1}=cases; [bnet2, LL2] = learn_params_dbn_em(engine, ev, 3);