Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mk_chmm.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function bnet = mk_chmm(N, Q, Y, discrete_obs, coupled, CPD) % MK_CHMM Make a coupled Hidden Markov Model % % There are N hidden nodes, each connected to itself and its two nearest neighbors in the next % slice (apart from the edges, where there is 1 nearest neighbor). % % Example: If N = 3, the hidden backbone is as follows, where all arrows point to the righ+t % % X1--X2 % \/ % /\ % X2--X2 % \/ % /\ % X3--X3 % % Each hidden node has a "private" observed child (not shown). % % BNET = MK_CHMM(N, Q, Y) % Each hidden node is discrete and has Q values. % Each observed node is a Gaussian vector of length Y. % % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS) % If discrete_obs = 1, the observations are discrete (values in {1, .., Y}). % % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED) % If coupled = 0, the chains are not coupled, i.e., we make N parallel HMMs. % % BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED, CPDs) % means use the specified CPD structures instead of creating random params. % CPD{i}.CPT, i=1:N specifies the prior % CPD{i}.CPT, i=2N+1:3N specifies the transition model % CPD{i}.mean, CPD{i}.cov, i=N+1:2N specifies the observation model if Gaussian % CPD{i}.CPT, i=N+1:2N if discrete if nargin < 2, Q = 2; end if nargin < 3, Y = 1; end if nargin < 4, discrete_obs = 0; end if nargin < 5, coupled = 1; end if nargin < 6, rnd = 1; else rnd = 0; end ss = N*2; hnodes = 1:N; onodes = (1:N)+N; intra = zeros(ss); for i=1:N intra(hnodes(i), onodes(i))=1; end inter = zeros(ss); if coupled for i=1:N inter(i, max(i-1,1):min(i+1,N))=1; end else inter(1:N, 1:N) = eye(N); end ns = [Q*ones(1,N) Y*ones(1,N)]; eclass1 = [hnodes onodes]; eclass2 = [hnodes+ss onodes]; if discrete_obs dnodes = 1:ss; else dnodes = hnodes; end bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... 'observed', onodes); if rnd for i=hnodes(:)' bnet.CPD{i} = tabular_CPD(bnet, i); end for i=onodes(:)' if discrete_obs bnet.CPD{i} = tabular_CPD(bnet, i); else bnet.CPD{i} = gaussian_CPD(bnet, i); end end for i=hnodes(:)'+ss bnet.CPD{i} = tabular_CPD(bnet, i); end else for i=hnodes(:)' bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); end for i=onodes(:)' if discrete_obs bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); else bnet.CPD{i} = gaussian_CPD(bnet, i, CPD{i}.mean, CPD{i}.cov); end end for i=hnodes(:)'+ss bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); end end