Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/kalman1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Make a linear dynamical system % X1 -> X2 % | | % v v % Y1 Y2 intra = zeros(2); intra(1,2) = 1; inter = zeros(2); inter(1,1) = 1; n = 2; X = 2; % size of hidden state Y = 2; % size of observable state ns = [X Y]; bnet = mk_dbn(intra, inter, ns, 'discrete', [], 'observed', 2); x0 = rand(X,1); V0 = eye(X); C0 = rand(Y,X); R0 = eye(Y); A0 = rand(X,X); Q0 = eye(X); bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0, 'cov_prior_weight', 0); bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, ... 'clamp_mean', 1, 'cov_prior_weight', 0); bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, ... 'clamp_mean', 1, 'cov_prior_weight', 0); T = 5; % fixed length sequences clear engine; engine{1} = kalman_inf_engine(bnet); engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T); engine{3} = jtree_dbn_inf_engine(bnet); engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); N = length(engine); inf_time = cmp_inference_dbn(bnet, engine, T); ncases = 2; max_iter = 2; [learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter); % Compare to KF toolbox data = zeros(Y, T, ncases); for i=1:ncases data(:,:,i) = cell2num(cases{i}(onodes, :)); end [A2, C2, Q2, R2, x2, V2, LL2trace] = learn_kalman(data, A0, C0, Q0, R0, x0, V0, max_iter); e = 1; assert(approxeq(x2, CPD{e,1}.mean)) assert(approxeq(V2, CPD{e,1}.cov)) assert(approxeq(C2, CPD{e,2}.weights)) assert(approxeq(R2, CPD{e,2}.cov)); assert(approxeq(A2, CPD{e,3}.weights)) assert(approxeq(Q2, CPD{e,3}.cov)); assert(approxeq(LL2trace, LL{1}))