Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/jtree_clq_test.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Construct various DBNs and examine their clique structure. % This was used to generate various figures in chap 3-4 of my thesis. % Examine the cliques in the unrolled mildew net %dbn = mk_mildew_dbn; dbn = mk_chmm(4); ss = dbn.nnodes_per_slice; T = 7; N = ss*T; bnet = dbn_to_bnet(dbn, T); constrained = 0; if constrained stages = num2cell(unroll_set(1:ss, ss, T), 1); else stages = { 1:N; }; end clusters = {}; %[jtree, root, cliques, B, w, elim_order, moral_edges, fill_in_edges] = ... % dag_to_jtree(bnet, bnet.observed, stages, clusters); [jtree, root, cliques] = graph_to_jtree(moralize(bnet.dag), ones(1,N), stages, clusters); flip=1; clf;[dummyx, dummyy, h] = draw_dbn(dbn.intra, dbn.inter, flip, T, -1); dir = '/home/eecs/murphyk/WP/Thesis/Figures/Inf/MildewUnrolled'; mk_ps_from_clqs(dbn, T, cliques, []) %mk_collage_from_clqs(dir, cliques) % Examine the cliques in the cascade DBN % A-A % \ % B B % \ % C C % \ % D D ss = 4; intra = zeros(ss); inter = zeros(ss); inter(1, [1 2])=1; for i=2:ss-1 inter(i,i+1)=1; end % 2 coupled HMMs 1,3 and 2,4 ss = 4; intra = zeros(ss); inter = zeros(ss); % no persistent edges %inter = diag(ones(ss,1)); % persitence edges inter(1,3)=1; inter(3,1)=1; inter(2,4)=1; inter(4,2)=1; %bnet = mk_fhmm(3); bnet = mk_chmm(4); intra = bnet.intra; inter = bnet.inter; clqs = compute_minimal_interface(intra, inter); celldisp(clqs) % A A % \ % B B % \ % C C % \ % D-D ss = 4; intra = zeros(ss); inter = zeros(ss); for i=1:ss-1 inter(i,i+1)=1; end inter(4,4)=1; ns = 2*ones(1,ss); dbn = mk_dbn(intra, inter, ns); for i=2*ss dbn.CPD{i} = tabular_CPD(bnet, i); end T = 4; N = ss*T; bnet = dbn_to_bnet(dbn, T); constrained = 1; if constrained % elim first 3 slices first in any order stages = {1:12, 13:16}; %stages = num2cell(unroll_set(1:ss, ss, T), 1); else stages = { 1:N; }; end clusters = {}; %[jtree, root, cliques, B, w, elim_order, moral_edges, fill_in_edges] = ... % dag_to_jtree(bnet, bnet.observed, stages, clusters); [jtree, root, cliques] = graph_to_jtree(moralize(bnet.dag), ones(1,N), stages, clusters); % Examine the cliques in the 1.5 slice DBN %dbn = mk_mildew_dbn; dbn = mk_water_dbn; %dbn = mk_bat_dbn; ss = dbn.nnodes_per_slice; int = compute_fwd_interface(dbn); bnet15 = mk_slice_and_half_dbn(dbn, int); N = length(bnet15.dag); stages = {1:N}; % bat %cl1 = [16 17 19 7 14]; %cl2 = [27 25 21 23 20]; %clusters = {cl1, cl2, cl1+ss, cl2+ss}; % water %cl1 = 1:2; cl2 = 3:6; cl3 = 7:8; %clusters = {cl1, cl2, cl3, cl1+ss, cl2+ss, cl3+ss}; %clusters = {}; clusters = {int, int+ss}; %[jtree, root, cliques, B, w, elim_order, moral_edges, fill_in_edges] = ... % dag_to_jtree(bnet15, bnet.observed, stages, clusters); [jtree, root, cliques] = graph_to_jtree(moralize(bnet15.dag), ones(1,N), stages, clusters); clq_len = []; for c=1:length(cliques) clq_len(c) = length(cliques{c}); end hist(clq_len, 1:max(clq_len)); h=hist(clq_len, 1:max(clq_len)); axis([1 max(clq_len)+1 0 max(h)+1]) xlabel('clique size','fontsize',16) ylabel('number','fontsize',16)