Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/ghmm1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% Make an HMM with Gaussian observations % X1 -> X2 % | | % v v % Y1 Y2 intra = zeros(2); intra(1,2) = 1; inter = zeros(2); inter(1,1) = 1; n = 2; Q = 2; % num hidden states O = 2; % size of observed vector ns = [Q O]; bnet = mk_dbn(intra, inter, ns, 'discrete', 1, 'observed', 2); prior0 = normalise(rand(Q,1)); transmat0 = mk_stochastic(rand(Q,Q)); mu0 = rand(O,Q); Sigma0 = repmat(eye(O), [1 1 Q]); bnet.CPD{1} = tabular_CPD(bnet, 1, prior0); %% we set the cov prior to 0 to give same results as HMM toolbox %bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', mu0, 'cov', Sigma0, 'cov_prior_weight', 0); bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', mu0, 'cov', Sigma0); bnet.CPD{3} = tabular_CPD(bnet, 3, transmat0); T = 5; % fixed length sequences engine = {}; engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet)); engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); engine{end+1} = hmm_inf_engine(bnet); engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T); %engine{end+1} = frontier_inf_engine(bnet); engine{end+1} = bk_inf_engine(bnet, 'clusters', {[1]}); engine{end+1} = jtree_dbn_inf_engine(bnet); inf_time = cmp_inference_dbn(bnet, engine, T); ncases = 2; max_iter = 2; [learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter); % Compare to HMM toolbox data = zeros(O, T, ncases); for i=1:ncases data(:,:,i) = cell2num(cases{i}(bnet.observed, :)); end tic [LL2, prior2, transmat2, mu2, Sigma2] = mhmm_em(data, prior0, transmat0, mu0, Sigma0, [], 'max_iter', max_iter); t=toc; disp(['HMM toolbox took ' num2str(t) ' seconds ']) e = 1; assert(approxeq(prior2, CPD{e,1}.CPT)) assert(approxeq(mu2, CPD{e,2}.mean)) assert(approxeq(Sigma2, CPD{e,2}.cov)) assert(approxeq(transmat2, CPD{e,3}.CPT)) assert(approxeq(LL2, LL{e}))