Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/SLAM/Old/paskin1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
% This is like robot1, except we only use a Kalman filter. % The goal is to study how the precision matrix changes. seed = 1; rand('state', seed); randn('state', seed); if 0 T = 20; ctrl_signal = [repmat([1 0]', 1, T/4) repmat([0 1]', 1, T/4) ... repmat([-1 0]', 1, T/4) repmat([0 -1]', 1, T/4)]; else T = 60; ctrl_signal = repmat([1 0]', 1, T); end nlandmarks = 6; if 0 true_landmark_pos = [1 1; 4 1; 4 4; 1 4]'; else true_landmark_pos = 10*rand(2,nlandmarks); end if 0 figure(1); clf hold on for i=1:nlandmarks %text(true_landmark_pos(1,i), true_landmark_pos(2,i), sprintf('L%d',i)); plot(true_landmark_pos(1,i), true_landmark_pos(2,i), '*') end hold off end init_robot_pos = [0 0]'; true_robot_pos = zeros(2, T); true_data_assoc = zeros(1, T); true_rel_dist = zeros(2, T); for t=1:T if t>1 true_robot_pos(:,t) = true_robot_pos(:,t-1) + ctrl_signal(:,t); else true_robot_pos(:,t) = init_robot_pos + ctrl_signal(:,t); end nn = argmin(dist2(true_robot_pos(:,t)', true_landmark_pos')); %true_data_assoc(t) = nn; %true_data_assoc = wrap(t, nlandmarks); % observe 1, 2, 3, 4, 1, 2, ... true_data_assoc = sample_discrete(normalise(ones(1,nlandmarks)),1,T); true_rel_dist(:,t) = true_landmark_pos(:, nn) - true_robot_pos(:,t); end R = 1e-3*eye(2); % noise added to observation Q = 1e-3*eye(2); % noise added to robot motion % Create data set obs_noise_seq = sample_gaussian([0 0]', R, T)'; obs_rel_pos = true_rel_dist + obs_noise_seq; %obs_rel_pos = true_rel_dist; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Create params for inference % X(t) = A X(t-1) + B U(t) + noise(Q) % [L1] = [1 ] * [L1] + [0] * Ut + [0 ] % [L2] [ 1 ] [L2] [0] [ 0 ] % [R ]t [ 1] [R ]t-1 [1] [ Q] % Y(t)|S(t)=s = C(s) X(t) + noise(R) % Yt|St=1 = [1 0 -1] * [L1] + R % [L2] % [R ] % Create indices into block structure bs = 2*ones(1, nlandmarks+1); % sizes of blocks in state space robot_block = block(nlandmarks+1, bs); for i=1:nlandmarks landmark_block(:,i) = block(i, bs)'; end Xsz = 2*(nlandmarks+1); % 2 values for each landmark plus robot Ysz = 2; % observe relative location Usz = 2; % input is (dx, dy) % create block-diagonal trans matrix for each switch A = zeros(Xsz, Xsz); for i=1:nlandmarks bi = landmark_block(:,i); A(bi, bi) = eye(2); end bi = robot_block; A(bi, bi) = eye(2); A = repmat(A, [1 1 nlandmarks]); % same for all switch values % create block-diagonal system cov Qbig = zeros(Xsz, Xsz); bi = robot_block; Qbig(bi,bi) = Q; % only add noise to robot motion Qbig = repmat(Qbig, [1 1 nlandmarks]); % create input matrix B = zeros(Xsz, Usz); B(robot_block,:) = eye(2); % only add input to robot position B = repmat(B, [1 1 nlandmarks]); % create observation matrix for each value of the switch node % C(:,:,i) = (0 ... I ... -I) where the I is in the i'th posn. % This computes L(i) - R C = zeros(Ysz, Xsz, nlandmarks); for i=1:nlandmarks C(:, landmark_block(:,i), i) = eye(2); C(:, robot_block, i) = -eye(2); end % create observation cov for each value of the switch node Rbig = repmat(R, [1 1 nlandmarks]); % initial conditions init_x = zeros(Xsz, 1); init_v = zeros(Xsz, Xsz); bi = robot_block; init_x(bi) = init_robot_pos; %init_V(bi, bi) = 1e-5*eye(2); % very sure of robot posn init_V(bi, bi) = Q; % simualate uncertainty due to 1 motion step for i=1:nlandmarks bi = landmark_block(:,i); init_V(bi,bi)= 1e5*eye(2); % very uncertain of landmark psosns %init_x(bi) = true_landmark_pos(:,i); %init_V(bi,bi)= 1e-5*eye(2); % very sure of landmark psosns end %k = nlandmarks-1; % exact k = 3; ndx = {}; for t=1:T landmarks = unique(true_data_assoc(t:-1:max(t-k,1))); tmp = [landmark_block(:, landmarks) robot_block']; ndx{t} = tmp(:); end [xa, Va] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ... 'model', true_data_assoc, 'u', ctrl_signal, 'B', B, ... 'ndx', ndx); [xe, Ve] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ... 'model', true_data_assoc, 'u', ctrl_signal, 'B', B); if 0 est_robot_pos = x(robot_block, :); est_robot_pos_cov = V(robot_block, robot_block, :); for i=1:nlandmarks bi = landmark_block(:,i); est_landmark_pos(:,i) = x(bi, T); est_landmark_pos_cov(:,:,i) = V(bi, bi, T); end end nrows = 10; stepsize = T/(2*nrows); ts = 1:stepsize:T; if 1 % plot clim = [0 max(max(Va(:,:,end)))]; figure(2) if 0 imagesc(Ve(1:2:end,1:2:end, T)) clim = get(gca,'clim'); else i = 1; for t=ts(:)' subplot(nrows,2,i) i = i + 1; imagesc(Ve(1:2:end,1:2:end, t)) set(gca, 'clim', clim) colorbar end end suptitle('exact') figure(3) if 0 imagesc(Va(1:2:end,1:2:end, T)) set(gca,'clim', clim) else i = 1; for t=ts(:)' subplot(nrows,2,i) i = i+1; imagesc(Va(1:2:end,1:2:end, t)) set(gca, 'clim', clim) colorbar end end suptitle('approx') figure(4) i = 1; for t=ts(:)' subplot(nrows,2,i) i = i+1; Vd = Va(1:2:end,1:2:end, t) - Ve(1:2:end,1:2:end,t); imagesc(Vd) set(gca, 'clim', clim) colorbar end suptitle('diff') end % all plot for t=1:T i = 1:2*nlandmarks; denom = Ve(i,i,t) + (Ve(i,i,t)==0); Vd =(Va(i,i,t)-Ve(i,i,t)) ./ denom; Verr(t) = max(Vd(:)); end figure(6); plot(Verr) title('max relative Verr') for t=1:T %err(t)=rms(xa(:,t), xe(:,t)); err(t)=rms(xa(1:end-2,t), xe(1:end-2,t)); % exclude robot end figure(5);plot(err) title('rms mean pos')